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Abstract

One-Shot Neural Architecture Search (NAS) significantly
improves the computational efficiency through weight shar-
ing. However, this approach also introduces multi-model
forgetting during the supernet training (architecture search
phase), where the performance of previous architectures de-
grades when sequentially training new architectures with
partially-shared weights. To overcome such catastrophic
forgetting, the state-of-the-art method assumes that the
shared weights are optimal when jointly optimizing a poste-
rior probability. However, this strict assumption is not nec-
essarily held for One-Shot NAS in practice. In this paper,
we formulate the supernet training in the One-Shot NAS as a
constrained optimization problem of continual learning that
the learning of current architecture should not degrade the
performance of previous architectures. We propose a Nov-
elty Search based Architecture Selection (NSAS) loss func-
tion and demonstrate that the posterior probability could
be calculated without the strict assumption when maximiz-
ing the diversity of the selected constraints. A greedy nov-
elty search method is devised to find the most representative
subset to regularize the supernet training. We apply our
proposed approach to two One-Shot NAS baselines, ran-
dom sampling NAS (RandomNAS) and gradient-based sam-
pling NAS (GDAS). Extensive experiments demonstrate that
our method enhances the predictive ability of the supernet
in One-Shot NAS and achieves remarkable performance on
CIFAR-10, CIFAR-100, and PTB with efficiency.

1. Introduction
One-Shot Neural Architecture Search (NAS) recently at-

tracts massive interests in automating neural network ar-
chitecture design, since it can not only find state-of-the-
art architectures but also significantly reduce the search
hours through weight sharing. Early NAS methods adopt
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a nested approach to train numerous separate architectures
from scratch and utilize an Evolutionary Algorithm (EA)
or Reinforcement Learning (RL) to find the most promis-
ing architectures based on validation accuracy [12, 38, 29],
which are highly computational-expensive and impossi-
ble for most machine learning practitioners. Several ap-
proaches were proposed to address this efficiency concern
[3, 6, 34]. In particular, weight sharing, also called One-
Shot NAS [4, 28], is a promising direction. One-Shot NAS
defines the search space as a supernet which subsuming
all candidate architectures, and the candidate architectures
are evaluated through inheriting weights from the supernet.
Rather than training numerous separate architectures from
scratch, One-Shot NAS trains the supernet just once, thus it
significantly cuts down the search cost.

One-Shot NAS relies on a critical assumption that the
validation accuracy of architecture with inherited weights
should approximate to the test accuracy after retraining or
be highly predictive. Although Bender et al. [4] observed a
strong correlation between the validation accuracy and the
test accuracy when the supernet was trained through ran-
dom path dropout, Sciuto et al. [30] obtained contradict re-
sults when the weights of a single path (one architecture)
in the supernet were trained in each step in ENAS. This
single-path training method is also the most common strat-
egy adopted by state-of-the-art One-Shot NAS approaches
[10, 19, 13, 7] and also the scenario considered in this paper.
Adam et al. [1] showed that the RNN controller in One-Shot
NAS does not depend on past sampled architectures, which
makes its performance the same as random search. Simi-
larly, Singh et al. [31] found that there is no visible progress
in terms of the retrained performance for architectures gen-
erated by the controller during the architecture search phase
in ENAS, and architectures with more shared weights usu-
ally perform worse based on the trained supernet in ENAS.

Benyahia et al. [5] defined this phenomenon as multi-
model forgetting, which occurs when training multiple mod-
els with partially-shared weights for a single task. Suppose
we are given a large supernet containing multiple models
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Figure 1: Validation accuracy for 4 different architectures
during the supernet training for RandomNAS [19] and
GDAS [11]. The solid lines (“Arch”) are validation accu-
racy by inheriting weights from the supernet, and the dash
lines (“Arch-R”) are validation accuracy after retraining.

(architectures) with shared weights across them, and these
models are sequentially trained on a single task, then the
model with more shared weights dropped more accuracy
when training another model [5, 30]. The multi-model for-
getting problem is also illustrated in Fig.1, where the valida-
tion accuracy of four different architectures through inher-
iting weights during the supernet training is shown. It could
be observed that weight sharing presents massive fluctua-
tion in validation accuracy. Worse still, the performance of
architectures by inheriting weights gets worse during the su-
pernet training, which makes the architecture ranking based
on the supernet unreliable. Apparently, although weight
sharing reduces the computational hours greatly, it also in-
troduces the multi-model forgetting in the supernet training,
which will deteriorate the predictive ability of the supernet.

To overcome the multi-model forgetting in One-Shot
NAS and enhance the predictive ability of the supernet, we
formulate the supernet training as a constrained optimiza-
tion problem of continual learning, which avoids the per-
formance degradation of previous architectures when train-
ing a new architecture. Different from available works that
only consider the performance degradation of one last ar-
chitecture [5], or keep the shared parameters fixed [21], this
paper tries to find the most representative subset of previous
architectures to regularize the learning of current architec-
ture during the supernet training. We develop an efficient
greedy novelty search method for the constraints selection
with diversity maximization, and implement our approach
within two baselines, RandomNAS [19] and GDAS [11].
Experimental results demonstrates that our algorithm re-
duces the multi-model forgetting in their supernet training
significantly. Our contributions are summarized as follows.

• Firstly, we formulate the supernet training in the One-
Shot NAS as a constrained optimization problem of
continual learning, where the learning of current archi-
tecture should not degrade the performance of previous
architectures with partially-shared weights.

• Secondly, we devise an efficient greedy novelty search
method to select the most representative constraints
subset to approximate the feasible region formed by
all previous architectures.

• Thirdly, the proposed approach is applied to two One-
Shot NAS baselines, RandomNAS [19] and GDAS
[11], to reduce the multi-model forgetting in their su-
pernet training. Extensive experimental results illus-
trate the effectiveness of our method, which could re-
duce the multi-model forgetting and enhance the pre-
dictive ability of the supernet.

2. Background
2.1. Weight sharing Neural Architecture Search

One-Shot NAS is proposed by [28], which reduces the
search time greatly through weight sharing. Different from
training numerous separate architectures, One-shot NAS
encodes the search space A as a supernetWA, and the can-
didate neural architectures α directly inherit weights from
the supernet asWA(α). Since the One-Shot NAS only the
supernet once in the architecture search phase, so it could
greatly reduce the search time. One-Shot NAS searches for
the most promising architecture α∗ based the validation per-
formance with inheriting weights from the supernet:

min
α∈A

Lval(W∗A(α))

s.t. W∗A(α) = argmin Ltrain(WA(α))
(1)

Eq. (1) is more than a challenging bilevel optimiza-
tion problem, and the discrete characteristic of architecture
space also makes it impossible to utilize a gradient-based
method to solve it directly, where ENAS [28] uses an LSTM
controller to sample architectures. Differently, [13] and [19]
train the supernet based on the uniform sampling strategy to
sample architectures, and a random search or an evolution-
ary method is adopted to find the best-performed architec-
ture from the trained supernet.

Several state-of-the-art One-Shot methods utilize contin-
uous relaxation to transform the discrete architecture into
continuous space Aθ with parameters θ to further improve
the efficiency [23, 11, 33, 26]. The supernet weights and
architecture parameters could be jointly optimized through:

(α∗θ,WAθ (α∗θ)) = argmin
αθ,W

Ltrain(WAθ (α∗θ)) (2)

which makes it possible to apply continuous optimizing ap-
proaches on architecture search, and the best architecture
α∗ could be sampled from continuous architecture repre-
sentation α∗θ .

Since Eq.(2) is supposed to train the whole supernet in
each step, which has a much higher memory requirement



than ENAS, GDAS [11] further introduces a gradient-based
sampler to sample single path (an architecture) in each step
during the supernet training. The distribution of architec-
tures and the supernet weight can be jointly optimized while
the memory requirement equals to training a single archi-
tecture. Different from continuous relaxation, NAO [24]
utilizes the LSTM based autoencoder to transform the dis-
crete neural architectures to a continuous representations,
and then perform a gradient-based method in the continu-
ous space.

2.2. Multi-model Forgetting in One-Shot NAS

Catastrophic Forgetting is a common phenomenon in ar-
tificial general intelligence and multi-task learning, which
describes that the mode usually loses the information about
previous tasks after being trained on a new task [14, 18, 27].
Given a model with optimal parameters θ∗A on dataset
DA, its performance on DA declines dramatically after this
model being trained on another dataset DB . Methods to re-
solve such issues are defined as continual learning. Learn-
ing without forgetting (LwF) [22] adds the response of the
old task as a regularization term to prevent catastrophic
forgetting. Elastic weight consolidation (EWC) [17] pro-
poses to maximize the likelihood of conditional probability
p(θ | D), where D containing two independent data sets
DA and DB , and DA is not available when trained on DB .
Multi-model Forgetting presents when we train multiple
models in a single dataset. Different from sequentially
training a model on several tasks, One-Shot NAS is sup-
posed to apply different models, e.g., θa = (θpa, θ

s) and
θb = (θpb , θ

s), to a single dataset D, where θs is the shared
weight and θpa and θpb are private weights. Wang et al. [32]
showed that the single-modal network always outperformed
the multi-modal network when training them in a single
task, and the interactions between networks degraded the
performance of the whole network. It is also observed in
[30] and [20] that the catastrophic forgetting in the One-
Shot NAS would deteriorate the performance of previous ar-
chitectures after training a new architecture in the supernet.
Benyahia et al. [5] defined it as the problem of multi-model
forgetting and proposed a Weight Plasticity Loss (WPL) to
reduce this forgetting in One-Shot NAS, which tries to max-
imize the posterior probability p(θpa, θ

p
b , θ

s | D) as:

p(θ | D) =
p(θpa, θ

p
b , θ

s,D)
p(D)

=
p(θpa | θ

p
b , θ

s,D)p(θpb , θs,D)
p(D)

=
p(θpa, θ

s | D)p(D | θpb , θs)p(θ
p
b , θ

s)

p(θs,D)

=
p(θpa, θ

s | D)p(D | θpb , θs)p(θ
p
b , θ

s)∫
p(D | θpa, θs)p(θpa, θs)dθpa

=
p(θa | D)p(D | θb)p(θb)∫
p(D | θpa, θs)p(θpa, θs)dθpa

(3)

The loss function to maximize the likelihood of

p(θpa, θ
p
b , θ

s | D) is calculated as:

LWPL(θb) = Lc(θb) +
η

2
(‖θpb‖

2
+ ‖θs‖2) +

∑
θsi∈θs

ε

2
Fθsi (θsi − θ

∗
si) (4)

whereLc is the cross-entropy loss function, Fθsi is the diag-
onal element of the Fisher information matrix correspond-
ing to parameter θsi , and is estimated by presupposing pa-
rameters (θpa, θ

p
b ) are independent, and θ∗s are the shared pa-

rameters θs after the previous model being trained which
are assumed as in the optimal points. Detailed deviation of
Eq.(4) could be found in [5].

Limitations Weight Plasticity Loss (WPL) considers
only one previous architecture in each step of supernet train-
ing, and it assumes the shared weights are optimal. How-
ever, the two assumptions are hard to hold in the supernet
training of One-Shot NAS, since there are numerous archi-
tectures containing shared weights with current architecture
and the shared weights are usually far away from optimal
points. To handle these concerns, we formulate the super-
net training in One-Shot NAS as a constrained optimization
problem, where the learning of current architecture should
not degrade the performance of previously visited architec-
tures. We consider a subset of previous architectures as
constraints to regularize the learning of current architecture,
and demonstrate that the loss function of the posterior prob-
ability p(θpa, θ

p
b , θ

s | D) could be calculated without the as-
sumption that the shared weights are optimal when maxi-
mizing the diversity of the selected architectures.

3. Methodology
3.1. Problem Formulation

One-Shot NAS sequentially trains numerous architec-
tures and each of them is trained with few epochs. It in-
dicates that the model weights θa for previous architectures
are far away from optimal points, and the model weights
of the current architecture are usually shared by previous
architectures. Different from jointly optimizing the poste-
rior probability as WPL [5] under the assumption that θa is
near-optimal or keeping the shared weights fixed as Learn
to Grow [21], we formulate the supernet training in the One-
Shot NAS as a constrained optimization problem. In partic-
ular, we enforce the architectures inheriting weights from
the supernet in current step perform better than last step
with smaller training loss. Without loss of generality, we
consider the typical scenario that only one architecture in
the supernet is trained in each step, and the constrained op-
timization problem is defined as:

Wt
A = argmin

θ∈WA(αt)

Ltrain(WA(αt))

s.t. Ltrain(Wt
A(α

i)) ≤ Ltrain(Wt−1
A (αi)); ∀i ∈ {0...t− 1}

(5)

where αt is the current architecture in step t,Wt
A represents

the whole weights of the supernet in in step t, andWA(αt)



Algorithm 1 Greedy Novelty Search
Input: constraints archiveM, recent architectures archive
C, selected architecture αm, n.

1: N(αm,M)← calculate the novelty score of αm inM
based on Eq.(7);

2: for i = 1, 2, ..., n do
3: randomly sample an architecture αr from C;
4: if N(αr,M) > N(αm,M) then
5: replace αm with αr;
6: end if
7: end for

is the weights of architecture αt inherited from the supernet,
and onlyWA(αt) is optimized in each step t.

3.2. Constraints Selection based on Novelty Search

The constraints in Eq.(5) prevent the learning of current
architecture degrading the performance of previous archi-
tectures to overcome the multi-model forgetting in One-
Shot NAS. However, the number of constraints in Eq.(5)
increases linearly with the step, which makes it intractable
to consider all constraints in the optimization. In practice,
we try to select a subset with M constraints from previous
architectures that the feasible region formed by the subset
is as close to the original feasible region as possible. Intu-
itively, maximizing the diversity of the subset is an efficient
way to find the most representative samples from the previ-
ous architectures. Based on this observation and motivated
by [2], we propose a surrogate for constraint selection:

maximizeM
∑

αi,αj∈M

dis(αi, αj)

s.t. M⊂ {α1...αt−1}; |M| =M

(6)

where dis(αi, αj) is to calculate the distance between ar-
chitectures. Solving Eq.(6) is an NP problem, while we
could use an alternative heuristic method to achieve the
same goal [2]. In this paper, we proposed a greedy nov-
elty search method to maximize the diversity of the subset.
Before the archive is full, we add all newcome architectures
into the subset. Once it is full, we choose the one that is
most similar to the current architecture to be replaced with
the one that maximizes the novelty score of the archive. We
adopt a simple and standard method to measure the novelty
of architectures, defined as N(α,M), which calculates the
mean distance of its k-nearest neighbors inM from it:

N(α,M) =
1

|S|
∑
αj∈S

dis(α, αj)

S = kNN(α,M) = {α1, α2, ..., αk}
(7)

In this paper, we only measure the difference of input edges
for each node in an architecture, since the order of nodes is
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Figure 2: NSAS loss function ensures that the learning of
current architecture will not deteriorate the performance of
previous architectures in the constraint subset.

fixed. We consider the input edges of the same node for two
architectures are the same only when the two edges have
same input node and same operations.

Practically, we selectM constraint architectures from |C|
recent architectures rather than all previous architectures.
After obtaining M most representative constraints, we need
to force the learning of the current architecture to be op-
timized in the feasible region formed by these constraints,
and a common approach is to convert the constraints to a
soft regularization loss or apply a replay buffer [2]. Algo-
rithm 1 describes a simple implementation of our greedy
novelty search method.

3.3. Novelty Search based Architecture Selection
Loss Function

It is intractable to consider all previously visited archi-
tectures in each step of supernet training, and we select a
subset of constraints {α1, ..., αM}with diversity maximiza-
tion to regularize the supernet training. The weights of these
architectures in the subset are described as {θ1, ..., θM}.
The loss function for the constrained optimization problem
in Eq. (5) could be described as Eq.(8) when the selected
constraints are converted to a soft regularization loss:

LN (WA(αt)) = Lc(WA(αt)) + λR(WA(αt))

+β
∑
i=1:M

Lc(WA(αi)) + λR(WA(αi)) (8)

where Ltrain(WA(α)) = Lc(WA(α)) + λR(WA(α)), Lc
is the cross-entropy loss function,R is the `2 regularization
term, β and λ are trade-offs. Here we term LN (WA(αt)) as
Novelty Search based Architecture Selection (NSAS) loss
function. While learning current architecture αt, NSAS
protects the performance of those architectures in the con-
straint subset by keeping these shared parameters staying
in a region of low error for these constraints, as shown
schematically in Fig. 2.



From Weight Plasticity Loss (WPL) to NSAS. WPL [5]
regularizes the learning of current architecture by maxi-
mizing the posterior probability p(θpa, θ

p
b , θ

s | D), where
θa = {θpa, θs} is the weights of the last architecture, θb =
{θpb , θs} is the weights of current architecture, and θs is
their shared weights. Different from WPL which only con-
siders one previous architecture, we consider a subset of
previously visited architectures that θa = {θ1, ..., θM} =
{(θp1 , θs1), ..., (θ

p
M , θ

s
M )}, where θpi is the private weights,

and θsi is the shared weights with the current architecture.
When we maximize the diversity of the subset, the follow-
ing two assumptions should hold true: (1) The architectures
in this subset should cover all operations in the search space;
(2) There are no shared weights between these architectures.
Therefore, θpb = ∅ as all weights in the current architecture
are shared by previous architectures, and θi and θj should
be independent as we train different architecture indepen-
dently. Now the posterior probability is written as:

p(θ | D) =
p(θp1 ...θ

p
M , θ

s
1...θ

s
M ,D)

p(D)
=
p(θ1...θM ,D)

p(D)

=
p(θ1 | θ2...θM ,D)p(θ2...θM ,D)

p(D)
=

∏
i=1:M

p(θi | D) ∝
∏

i=1:M

p(D | θi)p(θi)

= p(θ)
∏

i=1:M

p(D | θi) = p(θt)
∏

i=1:M

p(D | θi)

(9)

where θi is the weights of architecture αi in constraints. As
only architecture αt is trained, p(θ) = p(θt), where θt is
the weights of the current architecture αt and θ is the all
considered weights. Eq.(9) obtains the posterior probability
without the assumption that θs in the previous step is op-
timal. Now the Weight Plasticity Loss could be calculated
without the assumption that the shared weights are optimal
when considering a subset of previously visited architec-
tures with diversity maximization as:

LWPL(WA(αt)) = εR(WA(αt)) +
∑
i=1:M

Lc(WA(αi)) (10)

where ε is also the trade-off. And the proposed NSAS loss
function could be also described with the Weight Plasticity
Loss in Eq.(10) as:

LN (WA(αt)) = Lc(WA(αt)) + λR(WA(αt))

+ β
∑
i=1:M

Lc(WA(αi)) + λR(WA(αi))

= Lc(WA(αt)) + βLWPL(WA(αt))

(11)

From Eq.(11), we can find that our proposed loss func-
tion is attempted to not only optimize the WPL but also op-
timize the learning of current architecture (also the shared
weights). That is because the shared weights are usually far
from the optimal point in One-Shot NAS, and we should not
only overcome the forgetting, but also optimize the shared
weights towards the optimal point.

Algorithm 2 One-Shot NAS-NSAS
Input: Dtrain, Dval, W , constraints archive M = ∅, M ,
batch size b, supernet training iteration T

for t = 1, 2, ..., (T ∗ size(Dtrain)/b) do
2: if size(M) < M then

sample αt based on gradient search or random
search, and update the weightsWA(α) by normal
loss function, and add architecture α intoM;

4: else
sample αt based on gradient search or random
search, select the architecture αm that is most
similar to αt from M, and replace αm with αr

to maximize the diversity of M based on Algo-
rithm 1. Update the weights WA(α) by our pro-
posed loss function in Eq.(8) or a replay buffer;

6: end if
end for

8: Obtain α∗ based on Eq.(1) (RandomNAS-NASA) or
Eq.(2) (GDAS-NASA).

3.4. One-Shot NAS with Novelty Search based Ar-
chitecture Selection

Our loss function is applied to two popular One-Shot
NAS: RandomNAS [19] and GDAS [11]. Same as the
most common weight sharing NAS, we only train a sin-
gle path in each step in the architecture search phase. It
is easy to incorporate our proposed loss function to ran-
dom sampling based NAS (RandomNAS) as it also trains
a single path in each step. However, most gradient-based
NAS methods, like DARTS [23] and SNAS [33], train the
whole supernet in each step during the supernet training,
which violates the assumption in this paper. In this paper,
we adopt GDAS [11] as the gradient-based sampling NAS
baseline, which utilizes the Gumbel-Max trick [15, 25, 33]
to relax the discrete architecture distribution to be contin-
uous and differentiable. The argmax function is applied
to the re-parameterized architecture distribution, to sample
an architecture in each step of the supernet training during
the forward pass. The softmax function is adopted during
the backward pass for architecture learning. Algorithm 2
presents the One-Shot NAS with our proposed NSAS loss
function, termed as One-Shot NAS-NSAS.

4. Experiments and Results
To evaluate the effectiveness of our proposed algorithm,

we apply our method to both RandomNAS [19] and GDAS
[11] on datasets CIFAR-10, CIFAR-100, and Penn Tree-
bank (PTB). All experimental designs are following the set-
tings in [19, 23] for a fair comparison. Our new meth-
ods are denoted as RandomNAS-NSAS and GDAS-NSAS.
We compare our methods with the state-of-the-art One-Shot



Method Test Error (%) Parameters Search Cost Memory Supernet
CIFAR-10 CIFAR-100 (M) (GPU Days) Consumption Optimization

NAO-WS [24] 3.53 - 2.5 - Single path Gradient
ENAS [28] 2.89 18.91† [11] 4.6 0.5 Single path RL
SNAS [33] 2.85±0.02 20.09* 2.8 1.5 Whole Supernet Gradient
PARSEC [8] 2.86±0.06 - 3.6 0.6 Single path Gradient
BayesNAS [37] 2.81±0.04 - 3.40 0.2 Whole Supernet Gradient
RENAS [9] 2.88±0.02 - 3.5 6 - RL&EA
MdeNAS [36] 2.40 - 4.06 0.16 Single path MDL
MdeNAS* [36] 2.87* 17.61* 3.78* 0.16 Single path MDL
DSO-NAS [35] 2.84±0.07 - 3.0 1 Whole Superne Gradient
WPL [5] 3.81 - - - Single path RL
Random baseline [23] 3.29±0.15 - 3.2 4 - Random
DARTS (1st) [23] 2.94 - 2.9 1.5 Whole Supernet Gradient
DARTS (2nd) [23] 2.76±0.09 17.54 †[11] 3.4 4 Whole Supernet Gradient
RandomNAS [19] 2.85±0.08 17.63* 4.3* 2.7 Single path Random
RandomNAS-NSAS 2.64(2.50) 17.56(16.85) 3.08 0.7 Single path Random
GDAS [11] 2.93 18.38 3.4 0.21 Single path Gradient
GDAS-NSAS 2.73 18.02 3.54 0.4 Single path Gradient

Table 1: Test errors on CIFAR-10, compared with state-of-the-art NAS approaches. “*” indicates the results reproduced
based on the best reported cell structures with the same experimental setting as ours. “†” indicates the results are reported
in the [11]. We do not reproduce those methods with “-” in CIFAR-100 experiment since they are with different search
spaces or do not report their best structures. All models are trained with 600 epochs, and we also train our best found model
(RandomNAS-NSAS) with more epochs (1000 training epochs) to get the state-of-the-art results. The best models obtained
by all One-Shot NAS methods are trained with cutout.

NAS methods and evaluate the supernet predictive ability of
our approach compared with baselines.

4.1. Architecture Search for Convolutional Cells

We conduct comparative experiments for convolutional
neural architecture search on CIFAR-10. The search space
and hyperparameters setting are following the settings in
[23, 19] for a fair comparison. This search space searches
for micro-cell structures, which are stacked in series to form
the final structure. In the supernet training (architecture
search) stage, we only stack 8 cells to build the supernet
with 16 initial channels and 64 batch size. After supernet
training and obtaining the promising cells, we stack 20 cells
to form the final architecture, and train it with 96 batch size.
The comparison results are demonstrated in Table 1, which
can be summarized as follows:

• Compared with RandomNAS and GDAS which both
employ normal cross-entropy loss function, our pro-
posed NSAS loss function could greatly enhance the
search results, where RandomNAS obtains 5.6% im-
provement and 4.8% improvement for GDAS. These
results also demonstrate that the effectiveness of the
proposed loss function, which could relieve the rank

disorder incurred by weight sharing and improve the
supernet predictive ability.

• Compared with other NAS methods, our
RandomNAS-NSAS achieves a competitive re-
sult with a 2.64% test error on CIFAR-10, and a
2.50% test error with 1000 training epochs. This is an
inspiring result to validate our design to overcoming
multi-model forgetting.

• Since the proposed method needs to evaluate more ar-
chitectures during the supernet training, it has a little
bit higher search cost than the baselines. However, the
proposed method is still very efficient that the super-
net training only costs 0.7 GPU day for RandomNAS-
NSAS and 0.4 GPU day for GDAS-NSAS. We fur-
ther transfer the found architecture on CIFAR-10 to
CIFAR-100 to evaluate its transferability.

The architecture evaluation setting on CIFAR-100 is the
same as CIFAR-10, and all results are reported in Table 1.
We also increase the number of initial filters to 50 (and the
parameters increase to 5.8 M) before transfer our best found
structure to CIFAR-100 to enhance its performance, and we
could observe that our network achieves state-of-the-art re-
sults (a test error of 16.85%) among all compared methods.



Method Perplexity Paras Search
Valid Test (M) Cost

ENAS* [19] 60.8 58.6 24 0.5
NAO-WS [24] - 56.6 27 0.4
WPL [5] - 61.9 - -
Random baseline [23] 61.8 59.4 23 2
DARTS (1st) [23] 60.2 57.6 23 0.5
DARTS (2nd) [23] 58.8 56.6 23 1
DARTS (2nd)* [23] 59.21* 56.71* 23 1
RandomNAS [19] 57.8 55.5 23 0.25
RandomNAS* [19] 59.7* 57.16* 23 0.25
RandomNAS-NSAS 59.22 56.84 23 0.62
GDAS [11] 59.8 57.5 23 0.4
GDAS* [11] 60.23* 57.69* 23 0.4
GDAS-NSAS 59.74 57.24 23 0.50

Table 2: Comparison results with One-Shot NAS methods
on PTB. “*” indicates the results reproduced based on the
best reported cell structures with the same experimental set-
ting as ours.

4.2. Architecture Search for Recurrent Cells

We also conduct experiments for the RNN cell structure
search on the PTB dataset, and the search space and hy-
perparameters setting are following settings in [19, 23] for
fair comparison. In the RNN supernet training, the hidden
and the embedding sizes are set as 300, and the supernet is
trained for 300 epochs with batch size 128. After supernet
training and obtaining the promising cells, we change the
hidden and the embedding sizes to 850, and train the net-
work for 3600 epochs with 64 batch size. The comparison
results on PTB with other baselines are presented in Table
2. The model discovered by our Random-NSAS achieves a
validation perplexity of 59.22 and a test perplexity of 56.84,
which is on par with the state-of-the-art approaches. A fur-
ther observation on our proposed loss function shows the
effectiveness of our NSAS loss function when it is applied
to two baselines. RandomNAS-NSAS and GDAS-NSAS
both surpass the original RandomNAS and GDAS with nor-
mal loss function. These results again show that the NSAS
loss function could enhance the supernet predictive ability,
as evidenced by the fact that our RandomNAS-NSA and
GDAS-NSAS both beat the two baselines with the normal
loss function.

4.3. Supernet Predictive Ability Comparison

Multi-model Forgetting in One-Shot NAS To demon-
strate catastrophic forgetting in neural architecture search,
we conduct experiments on convolutional cell search to
present the differences between weight sharing and retrain-
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Figure 3: Kendall Tau metric (τ ) of architecture ranking
based on weight sharing and retraining .

ing based architecture ranking for two baselines, Random-
NAS and GDAS. We tracked the validation accuracy of
inheriting weights for several fixed sampled architectures
with 8 stacked cells, and also plot the validation accuracy
for 100 epochs when retraining these separate architectures
from scratch in Figure 1. We could observe that architec-
tures directly inherit weights from the supernet present mas-
sive fluctuation in their validation accuracy, which makes
it hard to identify the quality of architecture according to
this accuracy. What is worse, the architecture ranking re-
sults completely violate the primary hypothesis in weight
sharing NAS that architectures with higher validation per-
formance based on weight sharing should achieve better re-
training performance. It should be noticed from Fig. 1 (b)
that, the performance of architectures by inheriting weights
even gets worse during the supernet training in GDAS.

Supernet Predictive Ability Comparison To verify the
effectiveness of our approach in relieving the rank disorder
in weight sharing neural architecture search, we incorporate
our proposed loss function into the RandomNAS and GDAS
frameworks, and conduct more experiments on the archi-
tecture ranking prediction. The validation accuracy through
inheriting supernet weights is usually different from retrain-
ing, while it should at least be highly predictive, especially
for those architectures with excellent performance. We
sample 4 excellent architectures in 4 rounds based on Ran-
domNAS and RandomNAS-NSAS, respectively. We indi-
vidually train these 12 architectures from scratch (4 from
RandomNAS, 4 from RandomNAS-NSAS, and 4 randomly
sampled in the previous experiment), and calculate the cor-
relation of architecture ranking between the validation ac-
curacy through weight sharing and retraining. Figure 3
presents the Kendall Tau (τ ) metric [16, 36] of architec-
ture ranking based on weight sharing and retraining during
the supernet training, which depicts the rank difference of
normal cross-entropy loss function and our proposed loss
function. Figure 4 (a) gives the final Kendall Tau (τ ) met-
ric values for RandomNAS and GDAS with different loss
functions after supernet training. It could be observed that
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Figure 4: (a) Architectures ranking difference between
the retraining and inheriting weights from trained supernet
for RandomNAS, RandomNAS-NSAS, GDAS, and GDAS-
NSAS, respectively. (b) The mean retraining validation ac-
curacy for architectures obtained through different methods.

the normal loss function presents poor supernet predictive
ability, which obtains τ = 0.0909 and τ = −0.1818 for
RandomNAS and GDAS, respectively. Although the super-
net trained by NSAS is not able to obtain the precisely iden-
tical architecture rank, our proposed loss function achieves
a positive correlation with much better Kendall Tau metric
(τ = 0.4242 and τ = 0.3030 for RandomNAS-NSAS and
GDAS-NSAS, respectively). A supernet with better predic-
tive ability tends to obtain architectures with better retrain-
ing performance, and Fig.4 (b) plots the mean retraining
validation accuracy of sampled architectures through dif-
ferent methods. We could find that RandomNAS-NSAS
achieves better results than normal RandomNAS, which fur-
ther verifies the effectiveness of our proposed method.

4.4. Discussion

We conduct a series of architecture search experiments
with two One-Shot baselines, and RandomNAS tends to
achieve better performance than GDAS (in both the nor-
mal and the proposed loss function). One underlying reason
may be the gradient-based methods usually obtain the local
optimal solution once the supernet is trained, while Ran-
domNAS further conducts the model selection (using ran-
dom search or EA) to find the global optimal solution from
the trained supernet. Since RandomNAS needs to evaluate
numerous architectures base on the trained supernet, it usu-
ally has a higher search cost than GDAS.

Fig. 5 visualizes the best-found cells by the proposed
approach for CNN and RNN models, and the codes and
trained models could be found here 1. After revisiting the
experimental results in previous subsections, it is clear that
the proposed loss function could greatly enhance the pre-
dictive ability of the supernet, which greatly improves the

1https://github.com/MiaoZhang0525/NSAS FOR CVPR.
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Figure 5: The best cells discovered on CIFAR-10 and PTB.

performance of the found architectures for two NAS base-
lines, RandomNAS and GDAS. The supernet training in
One-Shot NAS is definitely a multi-task problem, and de-
vising a more appropriate loss function rather than using
the normal one is a promising direction to improve the per-
formance of One-Shot NAS methods.

5. Conclusion and Future Works
This paper originally formulates the supernet training

as a constrained optimization problem to relieve the multi-
model forgetting in One-Shot neural architecture search. A
greedy novelty search method is adopted to select a rep-
resentative subset of constraints to regularize the supernet
training in the feasible region, and a Novelty Search based
Architecture Selection (NSAS) loss function is accordingly
devised to overcome the multi-model forgetting. We incor-
porate the proposed loss function into two One-Shot NAS
baselines. Experimental results on the neural architecture
search show the effectiveness of the proposed method. In
particular, our method improves supernet predictive abil-
ity and achieves excellent results in both convolutional cell
search and recurrent cell search. In the future work, we will
focus on searching on a latent space through transforming
the discrete architectures into continuous representations,
and also leveraging human knowledge on DNN design to
search for architectures with better transferable ability.
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