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ABSTRACT
Graph convolutional networks (GCNs) have achieved impressive
success in many graph related analytics tasks. However, most GCNs
only work in a single domain (graph) incapable of transferring
knowledge from/to other domains (graphs), due to the challenges
in both graph representation learning and domain adaptation over
graph structures. In this paper, we present a novel approach, un-
supervised domain adaptive graph convolutional networks (UDA-
GCN), for domain adaptation learning for graphs. To enable e�ec-
tive graph representation learning, we �rst develop a dual graph
convolutional network component, which jointly exploits local and
global consistency for feature aggregation. An attention mecha-
nism is further used to produce a uni�ed representation for each
node in di�erent graphs. To facilitate knowledge transfer between
graphs, we propose a domain adaptive learning module to opti-
mize three di�erent loss functions, namely source classi�er loss,
domain classi�er loss, and target classi�er loss as a whole, thus our
model can di�erentiate class labels in the source domain, samples
from di�erent domains, the class labels from the target domain,
respectively. Experimental results on real-world datasets in the
node classi�cation task validate the performance of our method,
compared to state-of-the-art graph neural network algorithms.
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Figure 1: An example of unsupervised graph domain adap-
tation. Given a graph in a target domain where all nodes are
unlabeled, domain adaptation aims to transfer knowledge
from the graph of an existing domain where nodes are la-
beled to classify nodes in the target domain.
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1 INTRODUCTION
Node classi�cation is an important yet challenging task in vari-
ous network1 applications, including social networks [2], protein-
protein interaction networks [11], and citation networks [18]. Many
research e�orts have been made in the past decade to develop
reliable and e�cient methods for node classi�cation tasks [44].
However, most of existing methods mainly focus on graph repre-
sentations for nodes from a single graph, and they have largely
overlooked the generalisation of the classi�cation model to a com-
pletely new graph. As a result, when the new graph is collected,
even it is very similar to an existing graph, we have to relabel the
nodes in the graph and rebuild a classi�er model for the node clas-
si�cation task. The ine�ectiveness of existing learning frameworks
for graph data calls for transferable models that enable knowledge
adapted from a source graph to a target graph.

Domain adaptation, which aims to support transfer learning
from a source domain with su�cient label information to a target
domain with plenty of unlabeled data by minimizing their domain
1Networks and graphs are interchangeable terms in the paper when referred to the
graph structure data.

https://doi.org/10.1145/3366423.3380219
https://doi.org/10.1145/3366423.3380219
https://doi.org/10.1145/3366423.3380219


WWW ’20, April 20–24, 2020, Taipei, Taiwan Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu

discrepancy, has already attracted a lot of interests from the �elds
of Computer Vision [20][21] and Natural Language Processing
[16][7]. However, applying domain adaptation to network analysis
like classifying nodes across networks has not been su�ciently
investigated. Given a source network having fully labeled nodes
and a target network without any labeled data, the objective of
unsupervised graph domain adaptation is to take advantage of the
rich labeled information from the source network to help build
an accurate node classi�er for the target network. An example of
unsupervised graph domain adaptation is illustrated in Figure 1.

Currently, most researches of domain adaptation concentrate on
CV and NLP �elds, which can not be directly applied on node classi-
�cation problems. The reasons are twofold: First, these methods are
usually designed for CV and NLP tasks, where samples (e.g. images
and sequences) are independent and identically distributed, result-
ing in little requirement for model rotational invariance. However,
network structured data, where nodes are connected with edges
representing their relations, require models with rotational invari-
ance because of the phenomenon known as graph isomorphism.
Therefore, existing methods can not model network structural in-
formation, which is the core of node classi�cation. Second, most
existing domain adaptation models learn discriminative represen-
tations in a supervised manner, in which the value of loss function
is only associated with each single sample’s absolute position in
their feature space. Network embedding for node classi�cation,
alternatively, usually aims to learn multipurpose representation in
an unsupervised manner by preserving the relative position of all
node pairs, resulting in increased di�culty in optimization.

Recently, there are some attempts to apply domain adaptation
ideas for graph-structured data. The CDNE [31] algorithm learns
transferable node embedding for cross network learning tasks by
minimizing the maximum mean discrepancy (MMD) loss. However,
it cannot jointly model network structures and node attributes,
which limits its modeling capacity. To utilize the network structure
for cross-network node classi�cation, the AdaGCN algorithm [6]
uses graph convolutional networks as a feature extractor to learn
node representations, and utilize adversarial learning strategy to
learn domain invariant node representation. Though it seems rea-
sonable to exploit GCNs and adversarial learning jointly to enhance
the performance of cross domain node classi�cation for graph-
structured data, these existing methods still cannot deal with three
levels of challenges e�ectively below.

(1) In data structure level, many existing methods, graph con-
volutional networks (GCNs) [18] in particular, only consider
the direct (the local consistency) neighbour nodes for knowl-
edge embedding, the global consistency information has not
been well investigated yet. In practice, the global consis-
tency relationship is vitally important. For instance, in a real
social network, each individual is a member of several com-
munities and can be in�uenced by her/his neighborhoods
with di�erent distances around her/him, ranging from lo-
cal consistency relationship (e.g. families, friends), to global
consistency relationship (e.g. society, nation states). Thus
global consistency relationship should also be exploited to
obtain a comprehensive representation of the node for graph
learning collaboratively.

(2) In representation learning level, most existing graph learn-
ing methods lean the node representation based on the local
consistency relationship. However, as mentioned above, the
global consistency relationship cannot be neglected. Thus,
in our scenario, how to combine the local and global rela-
tionship to capture a comprehensive representation of the
node is vitally important. Ideally, this should be done within
the end-to-end learning framework.

(3) In domain adaptive learning level, the existing graph domain
adaptations only utilize domain labels to help train a domain
classi�er to model the global distribution of source and target
domains, where a Gradient Reversal Layer [13] was proposed
to train domain classi�er to discern whether a sample is from
the source domain or the target domain. Meanwhile, the
source domain data was utilized to train a source classi�er
for source domain classi�cation learning. However, they
do not consider the target domain and ignore the semantic
information contained in target domain samples, which is
the key component in cross-domain learning. Therefore, the
source domain information, domain information and target
domain information should be considered collaboratively to
learn the domain-invariant and semantic representations.

To address the above limitations, we propose an Unsupervised
Domain Adaptive Graph Convolutional Networks (UDA-GCN) for
cross-domain node classi�cation by modeling the local and global
consistency relationship of each graph, and combining source infor-
mation, domain information and target information into a uni�ed
deep model. Our approach consists of three key components: (1) in
data structure level, the local and global consistency relationship of
each graph are utilized to assist in the training of node embedding
module. (2) in representation learning level, an inter-graphed based
attention mechanism is proposed to combine the local and global re-
lationship for a comprehensive node representation of each domain.
(3) in domain adaptive learning level, we advocate a domain adap-
tive learning approach to exploit the source information, domain
information and target information jointly, which can be utilized
to learn domain-invariant and semantic representations e�ectively
to reduce the domain discrepancy for cross-domain node classi�-
cation. Empirical results on three public real datasets demonstrate
that UDA-GCN outperforms the state-of-the-art cross-domain node
classi�cation methods. Our contributions can be summarized as
follows:

• We present a novel unsupervised graph domain adaptation
problem, and propose an e�ective graph convolutional net-
work algorithm to solve it.

• We propose a novel method to integrate local and global
consistency with an attention mechanism to learn e�ective
node embedding across networks.

• We design a new way to exploit source information and tar-
get information with di�erent loss functions, so that domain-
invariant and semantic representations can be e�ectively
learned to reduce the domain discrepancy for cross-domain
node classi�cation.

• We evaluate our method on real-world datasets, and the
results demonstrate that the proposed model outperforms
the baseline methods.
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2 RELATEDWORK
Our work is closely related to graph neural networks and cross
domain classi�cation. We brie�y review these works in this section.

2.1 Graph Neural Networks
Network node representation generally aims to map nodes with
higher proximities in a network closer to each other in the low-
dimensional latent space, which is based on network topology
structure only or with side information. For topology structure
only embedding methods, most of existing works focused on pre-
serving network structures and properties in embedding vectors
[28] [33] [14]. Line [33] and SDNE [39] seek to preserve the �rst-
order and second-order proximities between nodes based on the
�rst-order and second-order neighbors. DeepWalk [28] employs the
random walk sampling strategy to generate the neighborhood of
each node. Then, some deep learning approaches [4, 30] have been
employed to learn more similar feature representations for nodes
which can more easily reach each other within K steps. Aside from
topology structure only methods, many approaches are proposed to
incorporate side information such as node features [25] [43] [46].

Recently, graph neural networks have attracted attention all
around the world, which are designed to use deep learning archi-
tectures on graph-structured data [40, 42, 47, 48]. Many solutions
are proposed to generalize well-established neural network mod-
els that work on regular grid structure to deal with graphs with
arbitrary structures [24, 38, 41]. GCN [18] is a deep convolutional
learning paradigm for graph-structured data which integrates local
node features and graph topology structure in convolutional layers.
GAT [37] improves GCN by leveraging attention mechanism to
aggregate features from the neighbors of a node with discrimina-
tion. However, most of existing methods mainly focus on learning
representations for nodes from a single network. As a result, when
transferring models across networks to handle the same task, they
may su�er from the embedding space drift [8] and the embedding
distribution discrepancy [35]. Moreover, most of these methods
can only utilize the direct neighbourhood information (the local
consistency relationship), while the high-order proximities which
can capture the global consistency information are always be ne-
glected [3].

Graph domain adaptation v.s. Inductive Learning. It is wor-
thy to note that there are graph neural networks in recent years
on learning inductive representation for node classi�cation. Graph-
SAGE [15], for example, presents di�erent aggregation methods
for feature extraction and can be applied to learn the embedding
for nodes which are not in the training process. Unlike the induc-
tive learning methods which only use the training set to train the
model (the training data and testing data are separate), the domain
adaptation approach is to feed the training data and testing data
together into a network.

Di�erent from the previous approaches, we focus on domain
adaptation to implement the node classi�cation task across two
networks. Furthermore, we employ a dual graph convolutional
networks to capture the local and global consistency relationship
of each graph for node representation learning.

2.2 Cross-Domain classi�cation
Domain adaptation is a subtopic of transfer learning, which aims
to learn machine learning models transferable on di�erent but rel-
evant domains sharing same label space [23]. Many approaches
are proposed for cross-domain classi�cation, which can be roughly
categorized into four groups: (1) Instance re-weighting approaches
aim to identify the training samples in the source domain that are
most relevant to the target domain by instance re-weighting and im-
portance sampling. Then the re-weighted source instances are used
for training a target domain model [16]. (2) Co-training methods
bridge the gap between the source domain and the target domain
by slowly adding target features and the most reliable examples of
the current algorithm in the training set [5]. (3) Kernel methods
explore multiple kernels to induce an optimal learning space and
learn a kernel function and a robust classi�er by minimizing the
distribution mismatch between the labeled and unlabeled samples
from the source and target domains [9]. (4) Feature representation
based methods are designed to map di�erent domains into a com-
mon shared space and contract their feature distributions as close
as possible [7, 20, 32, 50]. Among them, deep feature representation
based methods have attracted a lot of attention in recent years due
to its e�ectiveness. They can be categoried into three branches, i.e.,
discrepancy-based methods [20][36], reconstruction-based meth-
ods [49][17], and adversarial-based methods [13][35][27]. For cross-
domain learning, many methods use an adversarial objective to
reduce domain discrepancy [12, 20]. Among which, the domain
adversarial neural network (DANN) [13] learns domain invariant
features by a minimax game between the domain classi�er and the
feature extractor, using a gradient reversal layer to back-propagate
the gradients computed from the domain classi�er.

Recently, domain adaptation have been utilized for graph-structured
data [6, 31, 45]. CDNE [31] learns transferable node embeddings for
cross network learning tasks by minimizing the maximum mean
discrepancy (MMD) loss. However, it cannot jointly model network
structures and node attributes, which might limit its modeling ca-
pacity. To utilize the network structure for cross-network node
classi�cation, some researches [6, 45] attempt to use graph convolu-
tional networks as feature extractor to learn node representations,
and utilize adversarial learning strategy to learn domain invari-
ant node representations, which obtain the promising performance.
However, the above methods only use the GCNwhich considers the
direct (the local consistency) neighbour nodes for knowledge em-
bedding, and neglect the global consistency information of network
for cross domain node classi�cation.

In this paper, we propose an end-to-end Unsupervised Domain
Adaptive Graph Convolutional Networks (UDA-GCN) for cross-
domain node classi�cation by jointly modeling local and global
consistency relations of each graph, domain information, source
domain information and target domain information as a uni�ed
learning framework.

3 PROBLEM DEFINITION AND OVERALL
FRAMEWORK

This section de�nes the problem to be addressed and introduces
notations used throughout the paper as summarized in Table 1.
Then we present the overall framework for the problem.
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Table 1: Notations.

Notation Description

G = (V , E , X , Y ) a weighted attributed graph
V node set of G
A the adjacency matrix of G
X feature matrix of G
Y the label matrix of G
N the number of nodes in G
C the number of node categories

Gs = (V s , Es , X s , Y s ) a fully labeled source graph
Gt =

�
V t , Et , X t � a completely unlabeled target graph
V s a set of all labeled nodes of Gs

Es a set of edges of Gs

N s the number of nodes in Gs

Y s 2 RNs⇥C a label matrix of Gs

V t a set of fully unlabeled nodes of Gt

Et a set of edges of Gt

N t the number of nodes in Gt

F the frequency matrix
P the point-wise mutual information (PPMI)

matrix
Z s source graph node representation
Z t target graph node representation
att s attention coe�cient of source domain
att t attention coe�cient of target domain

fs , fd , ft source classi�er, domain classi�er, target clas-
si�er

� the domain adaptation rate
�1, �2 the balance parameters of the overall objec-

tive

3.1 Problem Statement
Node Classi�cation on Graphs: In this paper, we focus on node
classi�cation on graphs. A graph is represented asG = (V , E,X ,Y ),
where V = {�i }i=1, · · · ,N is a vertex set representing the nodes in a
graph, and ei , j = (�i ,�j ) 2 E is an edge indicating the relationship
between two nodes. The topological structure of a graph G can be
represented by an adjacencymatrixA, whereAi , j = 1 if (�i ,�j ) 2 E;
otherwise Ai , j = 0. xi 2 X indicates content features associated
with each node �i . Y 2 RN⇥C is a label matrix ofG , where N is the
number of nodes in G and C is the number of node categories. If a
node �i 2 V is associated with label l , Y l(i) = 1 ; otherwise, Y l(i) = 0.

Source Domain Graph: Let Gs = (V s , Es ,X s ,Y s ) be a fully la-
beled source network with a set of all labeled nodesV s and a set of
edges Es . Y s 2 RN s⇥C is a label matrix of Gs , where N s = |V s | is
the number of nodes in Gs and C is the number of node categories.

Target Domain Graph: Similarly, the target network is repre-
sented as Gt =

�
V
t , Et ,X t � , which is a completely unlabeled

target network with a set of unlabeled nodes V t and a set of edges
E
t .

Unsupervised Domain Adaptive Node Classi�cation: Given
an unlabeled target networkGt and a fully labeled source network
Gs , the cross domain node classi�cation is to build a classi�er f
to accurately classify the nodes in the target network with the
assistance of the fully labeled source network. However, this is a
challenging task due to the lack of labels for Gt .

3.2 Overall Framework
In order to leverage cross-domain graphs to learn a classi�er for
node classi�cation, we propose an Unsupervised Domain Adap-
tive Graph Convolutional Networks (UDA-GCN) to reduce the
distribution gap and induce a low-dimensional feature representa-
tion shared across domains. Our framework, as shown in Figure 2,
mainly consists of the following three components:

• Node Representation Learning. In order to learn the bet-
ter representation of each node, we employ a dual graph
convolutional networks to capture the local and global con-
sistency relationship of each graph.

• Inter-Graph Attention. We develop an inter-graph atten-
tion approach to automatically determine theweights (atts ,att t )
of the source and target graph representations from the local
and global GCN layers, respectively.

• DomainAdaptive Learning forCross-DomainNodeClas-
si�cation. To enable cross-domain classi�cation, we advo-
cate a domain adaptive learning approach to train three
classi�ers. The �rst one is source classi�er, and aims to min-
imize the classi�cation loss on the source domain data. The
second one is domain classi�er, and a domain adversarial
loss is utilized to enforce the di�erentiation between the
source and target domains. The third one is target classi�er,
and as there’s no label in the target domain, an entropy loss
is placed on the target classi�er in order to obtain a better
semantic information of of the target domain. By doing so,
the domain adaptive learning can maximally utilize the do-
main information and target domain information to learn
domain-invariant and semantic representations e�ectively
to reduce the domain discrepancy for cross-domain node
classi�cation.

4 METHODOLOGY
This section presents our unsupervised domain adaptive graph
convolutional networks for cross-domain node classi�cation.

4.1 Node Embedding Module
In order to encode the semantic information of each node (to capture
the local and global information of the graph), the node representa-
tion learning procedure consists of two graph neural networks. For
local consistency, we introduce the convolutional method using
the graph adjacency matrix A. For global consistency, we propose
another convolutional method based on a random walk. We feed
both the source graph and target graph into our node embedding
module.

4.1.1 Local Consistency Network (Con�A). By directly utilizing the
GCN method proposed by [15], we formulate the Con�A as a type
of feed-forward neural network. Given the input feature matrix X
and adjacency matrix A, the output of the i-th hidden layer of the
network Z is de�ned as:

Con�
(i)
A (X ) = Z

(i) = �

⇣
D̃
� 1

2 ÃD̃
1
2Z

(i�1)
W

(i)
⌘

(1)

where Ã = A+ In is the adjacent matrix with self-loops (In 2 Rn⇥n
is the identity matrix), and D̃i ,i =

Õ
j Ãi , j . Accordingly, D̃�

1
2 ÃD̃

1
2 is
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Figure 2: The overall architecture of the proposed Unsupervised Domain Adaptive Graph Convolutional Networks (UDA-
GCN) for Cross Domain Node Classi�cation. The input consists of graphs from source and target domains. Our UDA-GCN
model consists of three components: (1) UDA-GCN �rst uses a dual graph convolutional networks to capture the local and
global consistency relationship of each graph. (2) Then, a inter-graphed based attention mechanism is proposed to combine
the output of di�erent convolved data transformations. (3) Finally, we introduce three classi�ers working together to learn
domain-invariant and semantic representations e�ectively for training the source classi�er, domain classi�er and the target
classi�er, respectively. For more details, please refer to the content in Section 4.

the normalized adjacency matrix. Z (i�1) is the output of the (i � 1)-
th layer, and Z

(0) = X .W (i) are the trainable parameters of the
network, and � (·) denotes the activation function.

4.1.2 Global Consistency Network (Con�P ). In addition to Con�A
which de�ned by the adjacent matrixA, we introduce a PPMI-based
convolution method to encode the gloable information, which is
denoted as a matrix P 2 RN⇥N .

Before obtaining the matrix P , we �rst calculate a frequency
matrix F using the random walk. Random walks have been used as
a similarity measure for a variety of problems in recommendation
[29], graph classi�cation [1], and semi-supervised learning [44].
Here, we use the random walk to calculate the semantic similarities
between nodes. We then calculate P and explain why it leverages
knowledge from the frequency to semantics based on F . Finally,
we de�ne the P-based graph convolution function Con�P .

Frequency matrix F : The Markov chain describing the sequence
of nodes visited by a random walker is called a random walk. If the
random walker is on node xi at time t , we de�ne the state as s(t) =
xi . The transition probability of jumping from the current node xi
to one of its neighbors x j is denoted as p(s(t + 1) = x j |s(t) = xi ). In
our problem setting, given the adjacency matrix A, we assign:

p(s(t + 1) = x j |s(t) = xi ) = Ai , j/
’
j
Ai , j (2)

Point-wise mutual information matrix (PPMI) P : After calcu-
lating the frequency matrix F , the i-th row in F is the row vector Fi ,:
and the j-th column in F is the column vector F:, j . Fi ,: corresponds
to a node xi and F:, j corresponds to a context c j . The contexts are
de�ned as all nodes in X . The value of an entry Fi , j is the number

of times that xi occurs in context c j . Based on F , we calculate the
PPMI matrix P 2 RN⇥N as:

pi , j =
Fi , jÕ
i , j Fi , j

, (3)

pi ,⇤ =

Õ
j Fi , jÕ
i , j Fi , j

, (4)

p⇤, j =
Õ
i Fi , jÕ
i , j Fi , j

, (5)

Pi , j =max

⇢
lo�

✓
pi , j

pi ,⇤p⇤, j

◆
, 0
�

(6)

Since our node embedding module consists of two networks, in
addition to the Con�A, which is based on the similarity de�ned by
the adjacency matrix A, another network Con�P is derived from
the similarity de�ned by the PPMI matrix P . This neural network
is given by:

Con�
(i)
P (X ) = Z

(i) = �

⇣
D
� 1

2 PD
� 1

2Z
(i�1)

W
(i)
⌘

(7)

where P is the PPMI matrix and Di ,i =
Õ
j Pi , j for normalization.

Obviously, applying di�usion based on such a node-contextual
matrix P ensures global consistency. Additionally, by using the
same neural network structure asCon�A, the two can be combined
very concisely. Therefore, source and target graphs are fed into the
parameters-shared node embedding module to learn representa-
tions.
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4.2 Inter-Graph Attention
After performing the node embeddingmodule for the source and tar-
get graph, we obtain four embeddings, Z s

A, Z
s
P for source graph and

Z
t
A,Z

t
P for target graph. We need to aggregate embeddings from dif-

ferent graphs to produce a uni�ed representation. For each domain,
as embeddings from the local and global consistency networks con-
tribute di�erently to learning the representation, we propose an
Inter-Graph Attention scheme to capture the signi�cance of each
embedding from each domain.

Specially, we use the original input X s and X t as the key of the
attention mechanism. We then perform attention on each domain
output (Z s

A,Z
s
P for source domain and Z

t
A,Z

t
P for target domain),

two attention coe�cient atts and att t are computed by an attention
function f for each domain, respectively:

att
k
A = f (Zk

A, �X
k ), (8)

att
k
P = f (Zk

P , �X
k ), (9)

where k denotes that the output is from the source domain s or
the target domain t , � is a shared weight matrix to make the input
X
k have the same dimension with the output Zk

A and Zk
P . Then we

further normalize the weight attk with a softmax layer.

attkA =
exp

⇣
attkA

⌘

exp
⇣
attkA + att

k
P

⌘ , (10)

attkP =
exp

⇣
attkP

⌘

exp
⇣
attkA + att

k
P

⌘ , (11)

After implementing the attention, we can get the �nal output
Z
s and Z t :

Z s = att sAZ
s
A + att

s
PZ

s
P . (12)

Z t = att tAZ
t
A + att

t
PZ

t
P . (13)

4.3 Domain Adaptive Learning for
Cross-Domain Node Classi�cation

To better learn a knowledge transfer across di�erent domains to
assist in the node classi�cation task, our proposed model consists of
a adversarial module, a source classi�er as well as a target classi�er
working together to learn both class discriminative and domain
invariant node representations, thus enabling classifying nodes in
the target network. The overall objective is as follows:

L(Z s ,Y s ,Z t ) = LS (Z s ,Y s ) + �1LDA(Z s ,Z t ) + �2LT (Z t ) (14)

The �1, �2 are the balance parameters. The LS , LDA and LT
represent the source classi�er loss, the domain classi�er loss and
the target classi�er loss, respectively. The details are introduced as
follows.

4.3.1 Source Classifier Loss. The source classi�er lossLS (fs (Z s ),Y s )
is to minimize the cross-entropy loss for the labeled data in the
source domain:

LS (fs (Z s ),Y s ) = � 1
Ns

Ns’
i=1

�i log(�̂i ), (15)

where �i denotes the label of the i-th node in the source domain,
�̂i are the classi�cation prediction for the i-th source labeled node
�
s
i , respectively.

4.3.2 Domain Classifier Loss. The domain classi�er lossLDA(Z s ,Z t )
enforces that the node representation after the node feature extrac-
tion process from source domain network Gs and target domain
network Gt are similar. To achieve this, we learn a domain classi-
�er fd (Q�(Z s ,Z t );�D ) parameterized by �D with an adversarial
training scheme, which tries to disciminative if a node is from G

s

or Gt . On the one hand, we would like the source classi�er fs can
classify each node into the correct class via minimizing Eq. (15).
On the other hand, we would like that node representations from
di�erent domains are similar, so that the domain classi�er cannot
di�erentiate if the node comes from G

t or Gs . In our paper, we
use Gradient Reversal Layer (GRL) [13] for adversarial training.
Mathematically, we de�ne the GRL as Q�(x) = x with a reversal
gradient @Q� (x )

@x = ��I . Learning a GRL is adversarial in such a
way that: on the one side, the reversal gradient enforces fs (Z s ) to
be maximized; on the other side, �D is optimized by minimizing
the cross-entropy domain classi�er loss:

LDA = �
1

N s + N t

N s+N t’
i=1

mi log(m̂i ) + (1 �mi )log(1 � m̂i ) (16)

where mi 2 {0, 1} denotes the groundtruth, and m̂i denotes the
domain prediction for the i-th document in the source domain and
target domain, respectively.

4.3.3 Target Classifier Loss. In the target domain, an entropy loss
is placed on the target classi�er. Unlike the source classi�er, we
do not use cross-entropy as the label loss, because we do not have
the class information for the unsupervised learning in the target
domain. In order to utilize the data in the target domain, we employ
an entropy loss for the target classi�er ft :

LT (ft (Z t )) = � 1
N t

N t’
i=1

�̂i log(�̂i ), (17)

where �̂i are the classi�cation prediction for the i-th node �ti in the
target domain.

LS (Z s ,Y s ), LDA(Z s ,Z t ) and LT (Z t ) are jointly optimized via
our objective function in Eq. (14), and all parameters are optimized
using the standard backpropagation algorithms.

4.4 Algorithm Description
Our algorithm is illustrated in Algorithm 1. Given a source graph
G
s = (V s , Es ,X s ,Y s ) and a target graphGt =

�
V
t , Et ,X t � , our goal

is to obtain the node representations of the source graph and the
target graphZ s andZ t , respectively. Firstly, we employ a dual graph
convolutional networks to capture the local and global consistency
relationship of each graph (Step 2-8). Here, the original input are
X
s and X t , the output are Z s

A,Z
s
P for source domain and Z t

A,Z
t
P for

target domain. Then we propose an inter-graph attention scheme
to the output of each domain and we obtain the �nal output of
node representations Z s and Z

t (Step 9). Finally, by employing
the source classi�er, domain classi�er and target classi�er, we can
maximally utilize the domain information and label information to
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Algorithm 1 UDA-GCN training algorithm for cross domain node classi-
�cation
Require:

source domain network Gs = (V s , Es , X s , Y s );
target domain network Gt =

�
V t , Et , X t � ;

the numbers of GCN layers L;
Ensure:

[Z s , Z t ]: output embeddings
[fs , fd , ft ]: source classi�er; domain classi�er; target classi�er;

1: while not convergence do
2: for i=1 to L do
3: Z i

A  Con� (i )
A

⇣
Z (i�1)

⌘
4: Z i

P  Con� (i )
P

⇣
Z (i�1)

⌘
5: if i = 1 then
6: Z (i�1)  X
7: end if
8: end for
9: [Z s

A , Z
s
P , Z

t
A , Z

t
P ]  Obtain four embeddings for source domain

and target domain.
10: [Z s , Z t ] Learn output embeddings for source domain and target

domain using Eqs. (12) and (13)
11: fs  Learn source classi�er from Z s and Y s using Eq. (15)
12: fd  Learn domain classi�er from Z s and Z t using Eq. (16)
13: ft  Learn target classi�er from Z t using Eq. (17)
14: Back-propagate loss gradient from Z s , Z t and Y s using Eq. (14)
15: Update weights
16: if early stopping condition satis�ed then
17: Terminate
18: end if
19: end while

learn domain-invariant and semantic representations e�ectively to
reduce the domain discrepancy for cross-domain node classi�cation
(Step 11-13).

4.5 Time Complexity Analysis
Given a graph with n nodes andm edges, if the adjacent matrix is
sparse, the time complexity for the graph convolution operation of
GCN is O(m). In our model, we use the point-wise mutual informa-
tion (PPMI) matrix instead of the adjacency matrix for propagation.
Because the PPMI matrix is not guaranteed to be sparse, its com-
plexity is subject to a dense matrix complexity: O(n2). In addition,
because we employ a dual GCN consisting of the sparse adjacency
matrix and a dense PPMI matrix, the overall time complexity of
Dual GCN moudle is O(m + n2).

5 EXPERIMENTS
In this section, we will �rst describe benchmark datasets, baselines
and experimental setting, and then report the algorithm perfor-
mance.

5.1 Benchmark Datasets
We conduct experiments on three real-world networks. We con-
structed graphs based on datasets provided by ArnetMiner [34].
The details of the experimental datasets are displayed in Table 2.
DBLPv8, ACMv9 and Citationv2 are three paper citation networks

from di�erent original sources (DBLP, ACM and Microsoft Aca-
demic Graph respectively) and for each dataset, we extracted the
papers published in di�erent periods, i.e., DBLPv8 (after year 2010),
ACMv9 (between years 2000 and 2010), and Citationv2 (before year
2008). In our experiments, we consider them as undirected networks
and each edge representing a citation relation between two papers.
We classify papers to some of the following six categories according
to its research topics, including “Database”, “Data mining”, “Arti-
�cial intelligent”, “Computer vision”, “Information Security” and
"High Performance Computing". We evaluate our proposed model
by conducting multi-label classi�cation on these three network
domains through six transfer learning tasks including C!D, A!D,
D!C, A!C, D!A, and C!A, where D, A, C denote DBLPv8,
ACMv9 and Citationv2, respectively.

Table 2: Statistics of the experimental datasets.

Dataset # of Nodes # of Edges # of Features # of Labels

DBLPv8 5578 7341 7537 6
ACMv9 7410 11135 7537 6

Citationv2 4715 6717 7537 6

5.2 Baselines
In order to make a fair comparison and demonstrate the e�ective-
ness of our proposed model, we employ the following methods
as baselines. We compare our approach with both state-of-the-art
single-domain node classi�cation models as well as cross-domain
models with the necessary domain adaption.
State-of-the-art single-domain node classi�cation models:

• DeepWalk [28]: It is a classics single network embedding
method which employs the random walk sampling strategy
to generate the neighborhood of each node and extends Skip-
Gram model to learn low-dimensional node representation.

• LINE [33]: LINE can preserve both �rst-order and second-
order proximities for the undirected network through mod-
eling node co-occurrence probability and node conditional
probability.

• GraphSAGE [15]: The spectral clustering algorithm of SFA
is adapted to co-cluster all words into the shared clusters for
domain adaptation.

• DNNs: DNNs is a multi-layer perceptron (MLP) which only
uses the node features.

• GCN [18]: GCN is a deep convolutional network for graph-
structured data, which integrates network topology, node
features and observed labels into an end-to-end learning
framework.

Cross-domain node classi�cation models with adaption:
• DGRL [13]: The feature generator is a 2-layer perceptron to
obtain the representation of each node. A gradient reverse
layer (GRL) is added for domain classi�cation..

• AdaGCN [6]: The feature generator is a GCN architecture
and a gradient reverse layer (GRL) is added to train a domain
classi�er.
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Table 3: Classi�cation accuracy comparisons on six cross-domain tasks.

Methods C!D A!D D!C A!C D!A C!A Average

DeepWalk 0.1397 0.1798 0.2840 0.2284 0.3649 0.2005 0.2329
LINE 0.2216 0.1972 0.2539 0.2848 0.4117 0.1895 0.2598

GraphSAGE 0.6151 0.7228 0.6312 0.4333 0.6961 0.4413 0.5900
DNNs 0.4035 0.4279 0.5065 0.3832 0.5904 0.3669 0.4464
GCN 0.6250 0.6486 0.6259 0.4327 0.6945 0.4474 0.5790

DGRL 0.4229 0.4303 0.5018 0.3877 0.5947 0.3799 0.4529
AdaGCN 0.6388 0.7142 0.6399 0.4448 0.7045 0.4494 0.5986
UDA-GCN 0.7182 0.7341 0.7281 0.4770 0.7617 0.4603 0.6466

Table 4: Classi�cation accuracy comparisons between UDA-GCN variants on six cross-domain tasks.

Methods C!D A!D D!C A!C D!A C!A

UDA-GCN¬p 0.6522 0.7305 0.6522 0.4520 0.7103 0.4495
UDA-GCN¬d 0.7054 0.7162 0.6719 0.4651 0.7215 0.4559
UDA-GCN¬t 0.6882 0.7305 0.6880 0.4651 0.7393 0.4559
UDA-GCN 0.7182 0.7341 0.7281 0.4770 0.7617 0.4603

Table 5: The summary of the variants of graph convolu-
tional networks. The symbol ⇥ indicates the algorithm ex-
ploits the corresponding information.

Methods local global domain loss target loss

GraphSAGE ⇥
GCN ⇥

AdaGCN ⇥ ⇥
UDA-GCN¬p ⇥ ⇥ ⇥
UDA-GCN¬d ⇥ ⇥ ⇥
UDA-GCN¬t ⇥ ⇥ ⇥
UDA-GCN ⇥ ⇥ ⇥ ⇥

5.3 Experimental Settings
All deep learning algorithms are implemented in Pytorch [26] and
are trained with Adam optimizer. We follow the evaluation pro-
tocol in unsupervised domain adaptation [6, 19] and evaluate all
approaches through grid search on the hyperparameter space and
report the best results of each approach. We use all labeled source
samples and all unlabeled target samples. For all cross domain node
classi�cation tasks, we use the same set of parameter con�gurations
unless otherwise speci�ed. For each deep approach, we use a �xed
learning rate 1e�4. For GCN, AdaGCN and UDA-GCN, the GCNs
of both the source and target networks contain two hidden layers
(L = 2) with structure as 128 � 16. For DeepWalk and LINE, node
representations are �rst learned and then a one-vs-rest logistic
regression classi�er is trained with labeled nodes of source domain.
Here, the dimension of node representations for them are all set to
128 for fair comparison. For GraphSAGE, we also adapt it to the
inductive setting, and train in the source domain. Here, we utilize
the Pytorch version implemented by the geometric deep learning
extension library [10]. DNNs and DGRL have similar parameter
settings with GCN and AdaGCN, respectively. The adaptation rate
� is the following schedule: �=min( 2

1+exp(�10p) � 1, 0.1), and the p
is changing from 0 to 1 within the training process as in [13]. The

balance parameters�1, �2 are set 1, 0.8, respectively. The dropout
rate for each GCN layer is set to 0.3.

5.4 Cross-Domain Classi�cation Results
Table 3 lists the accuracy of di�erent methods on cross-domain
node classi�cation tasks. From the results, we have the following
observations:

(1) TheDeepWalk and LINE obtain theworst performance among
these baselines since they only utilize the network structure
information rather than node features. The DNNs also obtain
worse performance than the other methods. This is because
the traditional DNNs only consider node features, and do
not capture the graph structure information for better node
representation.

(2) Graph-based methods (GCN and GraphSAGE) have better
performances than the traditional two-step network embed-
ding methods (DeepWalk and LINE), which shows that the
end-to-end graph convolutional neural networks encoding
both local graph structure and features of nodes have com-
petitive advantages than traditional models in cross domain
node classi�cation.

(3) DGRL and AdaGCN have better performance than the tradi-
tional single-domain node classi�cation methods (DNNs and
GCN), con�rming the superiority of domain-loss in cross-
domain node classi�cation.

(4) The proposed UDA-GCN model consistently beats all the
baselines on six cross-domain tasks. It demonstrates that the
proposed domain adaptive graph neural network can better
capture the underlying representation of the documents and
reduce the distribution gap across domains by jointly mod-
eling local and global consistency relations of each graph,
domain information, source domain information and target
domain information as a uni�ed learning framework.
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Figure 3: The importance of attentionmechanism.node0 and
node1 are two random nodes of the network.
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Figure 4: Impact of feature dimensions of node output em-
beddings

5.5 Analysis of UDA-GCN Components
Because the proposed UDA-GCN containsmultiple key components,
in this section, we compare variants of UDA-GCN with respect to
the following aspects to demonstrate the e�ectiveness of UDA-GCN
— (1) the e�ect of the dual graph neural network module, (2) the
impact of domain-adversarial loss, and (3) the impact of the target
classi�er loss. The following UDA-GCN variants are designed for
comparison.

• UDA-GCN¬p: A variant of UDA-GCN with the global GCN
layer of DAGNN being removed, and only using the local
GCN layer.

• UDA-GCN¬d : A variant of UDA-GCN with the gradient
reverse layer of UDA-GCN (i.e., domain classi�er) being re-
moved.

• UDA-GCN¬t : A variant of UDA-GCN with the target classi-
�er loss of DAGNN being removed.

Di�erent variants of graph neural networks model are summarized
in Table 5, where the symbol ⇥ indicates the algorithm exploits the
corresponding information. The ablation study results are shown
in Table 4.

5.5.1 E�ects of the global GCN layer module. We compare UDA-
GCNwith UDA-GCN¬p to investigate the e�ectiveness of the novel
dual GCN approach employed in our paper. From the result, we
�nd that the UDA-GCN model performs better than UDA-GCN¬p,
which con�rms the superiority of the dual GCN which combines

the local and global relationship to capture a comprehensive repre-
sentation of the node.

5.5.2 Impact of domain-adversarial loss. In order to verify the ef-
fectiveness of the domain-adversarial loss, we compare UDA-GCN
model and UDA-GCN¬d . From Table 4, we can easily observe the
UDA-GCN model performs signi�cantly better than UDA-GCN¬d .
This con�rms that the usage of domain-adversarial loss can learn a
superior representation for nodes from di�erent domains.

5.5.3 Impact of the target classifier loss. In order to show the superi-
ority of the target classi�er, we design a variant model UDA-GCN¬t .
The only di�erence between UDA-GCN¬t and UDA-GCN is that
UDA-GCN¬t do not use the information of the target domain which
is also the core information in cross-domain learning. The results
in Table 4 show the performances of the node classi�cation task on
both datasets are improved when the target information are used,
indicating the e�ectiveness of the target classi�er loss.

5.6 Parameter Analysis
5.6.1 A�ention Mechanism. By employing the inter-graph atten-
tion method to combine the local and global relationship for a
comprehensive node representation, UDA-GCN obtains better re-
sults than AdaGCN.

Fig. 3 shows the importance vectors of two nodes (the node0
and node1, which are the randomly selected in this experiment).
Note that the importance vector is node-wise, that is, each type of
embedding plays di�erent roles for di�erent nodes. For node0, the
global embedding is much more important than the local embed-
ding, while for node1, the model pays more attention to the local
embedding. Regarding the motivation of the attention mechanism,
we �nd that the attention-based integration can perform better
than the simple averaging-based or concatenation integration. The
attention mechanism can capture the importance of di�erent types
of embeddings and learn the optimal integration weights of two
types of representations.

5.6.2 Impact of feature dimensions of node output embeddings Z s

and Z t . We set the number of feature dimensions of source output
embedding Z

s as the same as that of target output embedding
Z
t . UDA-GCN uses 2-layer GCNs with structure as 128 � 16, and

feature dimensions d of node output embeddings is 16. We vary
d from 4 to 128 and report the results of six cross domain node
classi�cation tasks, respectively in Figure 4. When d increases from
4 to 128, the accuracy of target domain is improved on both tasks.
Furthermore, only slight di�erences can be observed with di�erent
d , and the increase of d does not necessarily result in performance
improvements from 16 to 128. The results show that with su�cient
feature dimensions (d � 16), UDA-GCN is stable with the number
of feature dimensions.

5.6.3 Visualization. An important application of network repre-
sentation is to create meaningful visualizations that layout a net-
work on a two dimensional space. We visualize the learned em-
bedding for the target domain dataset. For simplicity, we only
visualize two learned embeddings in the DBLPv8!ACMv9 and
DBLPv8!Citationv2 to validate the e�ectiveness of our proposed
model. For each approach, we map the the learned embedding
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(a) DNNs (b) GraphSAGE (c) GCN (d) UDA-GCN

Figure 5: Visualization of the domain adaptive embedding learning results using t-SNE [22] (The source domain is DBLPv8
and the target domain is ACMv9).

(a) DNNs (b) GraphSAGE (c) GCN (d) UDA-GCN

Figure 6: Visualization of the domain adaptive embedding learning results using t-SNE [22] (The source domain is DBLPv8
and the target domain is Citationv2).

vectors to a 2-D space with the T-distributed Stochastic Neigh-
bor Embedding (t-SNE) [22] method. t-SNE can project each high-
dimensional objects into a 2-dimensional or 3-dimensional space,
where similar objects are modeled by nearby points and dissimilar
objects are modeled by distant points with high probability. By
t-SNE, the visualization result can preserve the similarity between
the learned embeddings.

Figs. 5 and 6 compare the visualization results of di�erent ap-
proaches. We can observe that the visualization using DNNs is not
very meaningful, where many nodes belonging to the same class are
not clustered together and clusters are overlapped. GraphSAGE and
GCN perform better than DNNs and their t-SNE results show more
meaningful clusters than DNNs. However, the boundaries of most
clusters are still hard to �nd. For the proposed UDA-GCN method,
clusters are much more clear and many obvious boundaries can
be found between clusters, which shows UDA-GCN can generate
more meaningful layout of the network than other approaches.

6 CONCLUSIONS
In this paper, we studied the problem of unsupervised graph do-
main adaptation. We argued that most existing graph neural net-
works only learn models in a single graph and fail to consider the

knowledge transfer across graphs. In this paper, we presented a
novel unsupervised domain adaptive graph convolutional networks
(UDA-GCN) to enable knowledge adaptation between graphs. By
employing a dual graph convolutional networks to exploit both
local and global relations of the graphs, we are able to learn better
representation for nodes in both source and target graphs. The
inter-graph attention mechanism presented here further generates
a uni�ed embedding for down-stream node classi�cation task. By
using a cross-entropy loss for source domain classi�cation, a do-
main adversarial loss for domain discrimination, and an entropy
loss for target domain information absorption, we are able to reduce
the domain discrepancy and enable e�cient domain adaptation. Ex-
perimental results on three real-world graph datasets show that our
algorithm outperforms existing methods for cross domain network
node classi�cation.
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