
One-Shot Neural Architecture Search:
Maximising Diversity to Overcome

Catastrophic Forgetting

Miao Zhang , Huiqi Li , Senior Member, IEEE, Shirui Pan , Xiaojun Chang, Chuan Zhou ,

Zongyuan Ge , and Steven Su , Senior Member, IEEE

Abstract—One-shot neural architecture search (NAS) has recently becomemainstream in theNAS community because it significantly

improves computational efficiency throughweight sharing. However, the supernet training paradigm in one-shot NAS introduces

catastrophic forgetting, where each step of the training can deteriorate the performance of other architectures that contain partially-shared

weightswith current architecture. To overcome this problem of catastrophic forgetting, we formulate supernet training for one-shot NASas a

constrained continual learning optimization problem such that learning the current architecture does not degrade the validation accuracy of

previous architectures. The key to solving this constrained optimization problem is a novelty search based architecture selection (NSAS)

loss function that regularizes the supernet training by using a greedy novelty searchmethod to find themost representative subset.We

applied the NSAS loss function to two one-shot NASbaselines and extensively tested themon both a common search space and aNAS

benchmark dataset.We further derive three variants based on theNSAS loss function, the NSASwith depth constrain (NSAS-C) to improve

the transferability, andNSAS-G andNSAS-LG to handle the situationwith a limited number of constraints. The experiments on the common

NAS search space demonstrate that NSAS and it variants improve the predictive ability of supernet training in one-shot NASwith

remarkable and efficient performance on the CIFAR-10, CIFAR-100, and ImageNet datasets. The resultswith the NASbenchmark

dataset also confirm the significant improvements these one-shot NASbaselines canmake.

Index Terms—AutoML, neural architecture search, continual learning, catastrophic forgetting, novelty search

Ç

1 INTRODUCTION

NEURAL architecture search (NAS) has re7cently attracted
massive interest from the deep learning community

because experts do not have inordinate amounts of time
and labor designing neural networks [13], [18], [29], [35],

[42], [47], [50], [71]. Early NAS methods were based on a
nested approach that trained numerous separate architectures
from scratch and then used reinforcement learning (RL) or an
evolutionary algorithm (EA) to find themost promising archi-
tectures, based on validation accuracy [19], [46], [72]. How-
ever, these methods are so computationally-expensive as to
be impractical for most machine learning practitioners. For
example, it would takemore than 1800 GPU days through RL
to find promising architectures for the problem outlined in
[72], and Real et al. [46] spent 7 days with 450 GPUs searching
for promising architectures with an EA. Recent studies have
shown that NAS can significantly improve computational
efficiency [3], [6], [63]. Weight sharing, in particular, also
called one-shot NAS [4], [45], [66], has attracted enormous
attention for automating neural architecture design. This is
because it not only finds state-of-the-art architectures but also
significantly reduces the search hours needed. One-shot NAS
encodes the search space as a supernet, where all possible
architectures directly inherit weights from the supernet for
evaluation without needing to be trained from scratch. Since
one-shot NAS only trains the supernet for architecture
searches, this learning paradigm might reduce the time a
search takes frommany days down to several hours.

Pioneer studies on one-shot NAS follow two sequential
steps [4], [14], [30], [45]. They first adopt an architecture sam-
pling controller to sample architectures for training the
supernet. Then, a heuristic search method finds promising
architectures over a discrete search space based on the
trained supernet [20], [30], [45], [58]. Later studies [7], [16],

� Miao Zhang is with the School of Information and Electronics, Beijing Insti-
tute of Technology, Beijing 100081, China, and with the Faculty of Infor-
mation Technology, Monash University, Clayton, VIC 3800, Australia,
and also with the Faculty of Engineering and Information Technology, Uni-
versity of Technology Sydney, Ultimo, NSW 2007, Australia.
E-mail: Miao.Zhang-2@student.uts.edu.au.

� Huiqi Li is with the School of Information and Electronics, Beijing Institute of
Technology, Beijing 100081, China. E-mail: huiqili@bit.edu.cn.

� Shirui Pan is with the Faculty of Information Technology, Monash Univer-
sity, Clayton, VIC 3800, Australia. E-mail: shirui.pan@monash.edu.

� Xiaojun Chang is with the Faculty of Information Technology, Monash
University, Clayton, VIC 3800, Australia , and also with the Faculty of
Computing and Information Technology, King Abdulaziz University,
Jeddah 21589, Saudi Arabia. E-mail: xiaojun.chang@monash.edu.

� Chuan Zhou is with the Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100081, China.
E-mail: zhouchuan@amss.ac.cn.

� Zongyuan Ge is with the Monash e-Research Centre, Monash University,
Clayton, VIC 3800, Australia. E-mail: Zongyuan.Ge@monash.edu.

� Steven Su is with the Faculty of Engineering and Information Technology,
University of Technology Sydney, Ultimo, NSW 2007, Australia.
E-mail: steven.su@uts.edu.au.

Manuscript received 15 Mar. 2020; revised 14 Sept. 2020; accepted 26 Oct. 2020.
Date of publication 3 Nov. 2020; date of current version 4 Aug. 2021.
(Corresponding authors: Huiqi Li and Shirui Pan.)
Recommended for acceptance by S. Dickinson.
Digital Object Identifier no. 10.1109/TPAMI.2020.3035351

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021 2921

0162-8828� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1262-4174
https://orcid.org/0000-0002-1262-4174
https://orcid.org/0000-0002-1262-4174
https://orcid.org/0000-0002-1262-4174
https://orcid.org/0000-0002-1262-4174
https://orcid.org/0000-0002-8720-3374
https://orcid.org/0000-0002-8720-3374
https://orcid.org/0000-0002-8720-3374
https://orcid.org/0000-0002-8720-3374
https://orcid.org/0000-0002-8720-3374
https://orcid.org/0000-0003-0794-527X
https://orcid.org/0000-0003-0794-527X
https://orcid.org/0000-0003-0794-527X
https://orcid.org/0000-0003-0794-527X
https://orcid.org/0000-0003-0794-527X
https://orcid.org/0000-0001-9958-8673
https://orcid.org/0000-0001-9958-8673
https://orcid.org/0000-0001-9958-8673
https://orcid.org/0000-0001-9958-8673
https://orcid.org/0000-0001-9958-8673
https://orcid.org/0000-0002-5880-8673
https://orcid.org/0000-0002-5880-8673
https://orcid.org/0000-0002-5880-8673
https://orcid.org/0000-0002-5880-8673
https://orcid.org/0000-0002-5880-8673
https://orcid.org/0000-0002-5720-8852
https://orcid.org/0000-0002-5720-8852
https://orcid.org/0000-0002-5720-8852
https://orcid.org/0000-0002-5720-8852
https://orcid.org/0000-0002-5720-8852
mailto:Miao.Zhang-2@student.uts.edu.au
mailto:huiqili@bit.edu.cn
mailto:shirui.pan@monash.edu
mailto:xiaojun.chang@monash.edu
mailto:zhouchuan@amss.ac.cn
mailto:Zongyuan.Ge@monash.edu
mailto:steven.su@uts.edu.au

[38], [39], [55], [59], [64] have further employed continuous
relaxation to differentiate between architectures so that the
gradient descent can be used to optimize the architecture
with respect to validation accuracy. The architecture param-
eters and supernet weights are alternatively optimized
through a bilevel optimization method, and the most prom-
ising architecture is obtained once the supernet is trained.

Since one-shot NAS evaluates candidate architectures
based on the validation accuracy of the weights it inherits
from the supernet as opposed to training them from scratch,
the success of one-shot NAS relies on a critical assumption
that the validation accuracy should approximate the test
accuracy after training from scratch or be highly predictive.
The authors of the first study on one-shot NAS [4] observed a
strong positive correlation between the validation accuracy
and the test accuracywhen the supernetwas trained through
random path dropout. Subsequent studies all rightly consid-
ered this assumption to be true for all one-shot NAS meth-
ods. However, several recent studies have revealed that this
assumption may not hold in most popular one-shot NAS
approaches. For instance, Sciuto et al. [61] show that there is
no observable correlation between the validation and test
accuracy of the weight-sharing paradigm with ENAS [45],
and Adam et al. [1] show that the RNN controller in ENAS
does not depend on past sampled architectures, which
means its performance is the same as a random search. Simi-
larly, Singh et al. [51] find that there is no visible progress in
terms of the retrained performance for found architectures
based on supernet during the architecture search phase,
implying the supernet training is useless for improving the
predictive ability of one-shot NAS. Further, Yang et al. [57]
conducted extensive experiments that demonstrated that the
current one-shot NAS techniques struggle to outperform
naive baselines. Rather, the success of one-shot NAS is
mostly due to the design of the search space.

Most one-shot NAS approaches [7], [14], [20], [30] adopt a
single-path trainingmethod for their supernet training, where
only a single path (one architecture) in the supernet is trained
in each step. This is the scenario we consider. However,
Benyahia et al. [5] observed that when training multiple mod-
els (architectures) with partially-shared weights for a single
task, the training of each model may lower the performance
of other models. Benyahia et al. [5] defined this phenomenon

as multi-model forgetting, also known as catastrophic for-
getting. They also observed this catastrophic forgetting in
one-shot NAS. For example, consider a large supernet con-
taining multiple models with shared weights across them.
Sequentially training each model on a single task could mean
that the accuracy of each model tends to drop when training
another model containing partially-shared weights [5], [61].
This multi-model forgetting in one-shot NAS is illustrated in
Fig. 1 in terms of the validation accuracy of four different
architectures during supernet training. What is clear from the
figure is that inheriting weights makes performance deterio-
rate even further during supernet training.

So, although weight sharing can greatly reduce computa-
tion hours, it can also introduce catastrophic forgetting into
the supernet training, which results in unreliable architec-
ture rankings. Addressing multi-model forgetting during
supernet training is an urgent issue if we are to better lever-
age one-shot NAS and improve the predictive ability of
supernets. Hence, we have formulated supernet training as
a constrained optimization problem for continual learning
to avoid degrading the performance of previous architec-
tures when training a new one.

That said, it is intractable to consider all previously vis-
ited architectures. Therefore, only the most representative
subset of previous architectures is used to regularize learn-
ing of the current architecture. We have devised an efficient
greedy novelty search method based on maximizing diver-
sity to select the constraints. We have also implemented the
approach in two one-shot baselines. The experimental
results demonstrate that our strategy is able to relieve
multi-model forgetting in one-shot NAS methods. A sum-
mary of our main contributions follows.

� We first formulate supernet training with one-shot
NAS as a constrained optimization problem of con-
tinual learning, where learning the current architec-
ture should not degrade the performance of previous
architectures with partially-sharedweights.

� We have also designed an efficient greedy novelty
search method based on maximizing diversity to
select a subset of the constraints that best approxi-
mate the feasible region formed by all previous
architectures.

Fig. 1. Left: The general process of one-shot NAS. First, the search space is defined as a supernet containing all candidate architectures. Then a sin-
gle path of the supernet (an architecture) is trained in each step of the supernet training process. Promising architectures are selected based on the
validation accuracy of weights inherited from the trained supernet without the need for training from scratch. Right: The validation accuracy for four
different architectures during the supernet training. The solid lines (“Arch”) are the accuracies returned using weights inherited from the supernet;
the dashed lines (“Arch-R”) are the accuracies after retraining.

2922 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

� With these two techniques, we then incorporate this
NSAS loss function (novelty search-based architec-
ture selection) into the RandomNAS [30] and GDAS
[16] one-shot NAS baselines to form RandomNAS-
NSAS and GDAS-NSAS, with the goal of reducing
the level of multi-model forgetting during supernet
training. Our best-found models from the common
search space [38] returned a competitive test error of
2.59 percent on CIFAR-10 and only took 0.7 GPU
days of search time.

� To improve transferability, we further devised a vari-
ant of NSAS, called NSAS-C, which searches for
“deeper” architectures in the convolutional cell
search. Experiments on the common search space
demonstrate increased transferability of the found
models, and competitive test errors of 16.69 percent
on CIFAR-100 and 25.5 percent on ImageNet.

� A series of experiments conducted with the NAS
benchmark dataset NAS-Bench-201 [17] also verify
that NSAS significantly reduce forgetting and
improve the performance of one-shot NAS baselines.

This paper outlines some significant extensions to our
recent conference paper [65]. These include: (1) improve-
ments to the transferability of the found models through a
variant of novel search strategy called NSAS-C. NSAS-C has
a depth constraint for convolutional architecture searches.
Experiments with ImageNet demonstrate its efficacy; (2) a
new NAS search space, NSA-Bench-201, along with com-
parative experiments against relevant baselines; (3) two
new variants of NSAS, NSAS-G and NSAS-LG, to handle sit-
uations with a limited number of constraints. Comparison
experiments with the NAS-Bench-201 dataset are provided
to showcase these extensions; and (4) an impact analysis of
the hyperparameters settings and constraint selection strat-
egy in Sections 5.2.2 and 5.2.3.

2 BACKGROUND

2.1 Neural Architecture Search

The goal of NAS is to automatically design deep neural net-
works without human intervention. In general, the architec-
ture of a deep neural network a is usually represented as a
directed acyclic graph (DAG), which is also a subgraph of
the whole search space a 2 A. A deep neural network could
be defined as Uða; waÞ, where wa are the weights associated
with architecture a. With NAS, one tries to find the architec-
ture with the best validation performance according to:

a� ¼ argmin
a2A

LvalðUða; w�aÞÞ; (1)

where w�a is derived by training architecture a on the train-
ing set while minimizing the training loss function Ltrain:

w�a ¼ argmin
w

LtrainðUða; waÞÞ: (2)

Early studies on NAS usually used a nested approach to
finding promising architectures by training numerous
architectures from scratch and leveraging EA [46] or RL [71]
to reveal the promising ones. However, from a practical
standpoint, it is computationally inefficient and often unaf-
fordable to evaluate numerous architectures in this way.

Therefore, more recently, researchers have shifted their
attention to reducing computation costs with strategies
such as performance prediction [3], [54], weights generation
[6], [63], weight sharing [38], [45], and so on [72].

2.2 One-Shot Neural Architecture Search

One-shot NAS encodes a search space A as a supernet WA
that consumes all possible candidates. Only the supernet is
trained, while all candidate architectures a directly inherit
weights from the supernet without needing to be trained
from scratch. Search times are therefore greatly reduced
because only one neural network needs to be trained during
the architecture search phase. The most promising architec-
ture a� is based on validation performance with weights
inherited from the supernet:

min
a2A

LvalðW�AðaÞÞ
s:t: W�AðaÞ ¼ argmin LtrainðWAðaÞÞ:

(3)

Eq. (3) is more than a challenging bilevel optimization
problem: the discrete characteristic of the architecture space
makes it impossible to use a gradient-based method to solve
the formula directly. For this reason, ENAS [45] uses an
LSTM controller to sample the architectures. Whereas, [20]
and [30] train the supernet based on a uniform sampling
strategy and the best-performing architecture from the
trained supernet is found through a random search or evo-
lutionary method.

Several state-of-the-art one-shot methods use continuous
relaxation to transform discrete architectures into a continu-
ous space Au with a softmax function to further improve
efficiency [16], [38], [43], [55]. The supernet weights and
architecture parameters can be jointly optimized through:

ða�u ;WAu
ða�uÞÞ ¼ argmin

au ;W
LtrainðWAu

ða�uÞÞ; (4)

making it possible to continually optimize the architecture
search. The best architecture a� is determined through arg-
max based on the continuous architecture representation a�u .

Since Eq. (4) is supposed to train the entire supernet in
each step, it has a much higher memory requirement than
ENAS. Hence, ProxylessNAS [7] transforms the real-valued
architecture parameters into binary representations through
binary gates, and only a single path is activated during the
supernet training. In this way, the memory requirement for
ProxylessNAS is the same as training a single architecture.
GDAS [16] introduces a gradient-based sampler to sample
the single path for each training step. Additionally, the distri-
bution of architectures and the supernet weights can be
jointly optimized, which means the memory requirement
also equates to only training a single architecture. Yao et al.
[59] developed a constrained optimization method to force
each step of the architecture optimization process in the con-
tinuous space to arrive at a binary result, thus reducing the
memory requirement of supernet training. Unlike continu-
ous relaxation, NAO [39] uses an LSTM-based autoencoder
to transform discrete neural architectures into continuous
representations. A differentiable method is then used to
search for architectures in the continuous space.

ZHANG ETAL.: ONE-SHOT NEURAL ARCHITECTURE SEARCH: MAXIMISING DIVERSITY TO OVERCOME CATASTROPHIC FORGETTING 2923

2.3 Multi-Model Forgetting in One-Shot NAS

Catastrophic Forgetting is a common problem in artificial gen-
eral intelligence and multi-task learning. It describes the
phenomenon of where a model forgets what it has learned
about a previous task(s) after being trained on a new task
[9], [22], [26], [28], [34], [44]. Formally, a model with optimal
parameters u�A for dataset DA will perform substantially less
well on DA after it has trained on another dataset DB. Meth-
ods to resolve such issues are defined as continual learning.
Some examples include learning without forgetting (LwF)
[33], which adds a response from the old task as a regulari-
zation term to prevent catastrophic forgetting, and elastic
weight consolidation (EWC) [26], which maximizes the like-
lihood of a conditional probability pðu j DÞ, where D contain-
ing two independent data sets DA and DB, and DA is not
available when trained on DB.

Multi-model Forgetting occurs when training multiple
models with a single dataset. Unlike training amodel on sev-
eral tasks sequentially, one-shot NAS applies different mod-
els to a single dataset D, e.g., ua ¼ ðupa; usÞ and ub ¼ ðupb ; usÞ, to
a single dataset D, where us is the shared weight and upa and
upb are private weights. Several recent studies [31], [53], [61]
have shown that the interactions between networks can
degrade the performance of a whole network, and that cata-
strophic forgetting with one-shot NAS can lower the perfor-
mance of previous architectures after training a new
architecture in the supernet. To alleviate this problem,
Benyahia et al. [5] proposed a weight plasticity loss (WPL),
whichmaximizes the posterior probability pðupa; upb ; us j DÞ as:

pðu j DÞ ¼ pðupa; upb ; us;DÞ
pðDÞ ¼ pðupa j upb ; us;DÞpðupb ; us;DÞ

pðDÞ
¼ pðupa; us j DÞpðD j upb ; usÞpðupb ; usÞ

pðus;DÞ
¼ pðua j DÞpðD j ubÞpðubÞ

pðus;DÞ :

(5)

However, it is intractable to calculate ðus;DÞ in Eq. (5), so
Benyahia et al. [5] made several presuppositions to make the
calculation feasible: a) that upa and us are independent, and b)
that the weights ua for previous model are in optimal points.
This way, pðus;DÞ can be estimated by the distance of us to
the optimal u�s with the diagonal of the Fisher information
defining the importance of each parameter. In WPL, the loss
function tomaximize the likelihood of pðupa; upb ; us j DÞ is calcu-
lated as:

LWPLðubÞ ¼ LcðubÞ þ h

2
ð upb
�� ��2þ usk k2Þ þ

X

usi2us

"

2
Fusi
ðusi � u�siÞ;

(6)

where Lc is the cross-entropy loss function, and Fusi
is the

diagonal element of the Fisher information matrix corre-
sponding to parameter usi . Fusi

is estimated by presuppos-
ing parameters ðupa; upbÞ are independent, and that u�s are the
shared parameters us after the previous model has been
trained, which are assumed to be in the optimal points. A
detailed derivation of Eq. (6) can be found in [5].

Limitations weight plasticity loss (WPL) only considers
one previous architecture in each step of supernet training.
This method is also based on the assumption that the shared

weights are optimal. However, these two assumptions are
hard to hold when training a supernet in a one-shot NAS
scheme given numerous architectures shared weights with
the current architecture. Plus, the shared weights are usu-
ally far away from the optimal points. To address these con-
cerns, we formulated supernet training with one-shot NAS
as a constrained optimization problem, where learning the
current architecture does not degrade the performance of
previously-visited architectures. We consider a subset of
previous architectures as constraints to regularize the learn-
ing of the current architecture. We also demonstrate that the
loss function of the posterior probability pðupa; upb ; us j DÞ can
be calculated without assuming that the shared weights are
optimal when maximizing the diversity of the selected
architectures.

3 METHODOLOGY

3.1 Problem Formulation

Unlike jointly optimizing the posterior probability under
the assumption that ua is near-optimal as per WPL [5] or
keeping the shared weights fixed as per Learn to Grow [32],
we formulate supernet training as a constrained optimiza-
tion problem. Specifically, we enforce the architectures with
inherited weights in the current step so as to perform better
than the last step. Without loss of generality, we consider a
typical scenario where only one architecture in the supernet
is trained in each step, and the constrained optimization
problem is defined as:

Wt
A ¼ argmin

u2WAðatÞ
LtrainðWAðatÞÞ;

s:t: LtrainðWt
AðaiÞÞ � LtrainðWt�1

A ðaiÞÞ; 8i 2 f0:::t� 1g:

(7)

Here, LtrainðWAðaÞÞ ¼ LcðWAðaÞÞ þ �RðWAðaÞÞ, and WA
represents the total of all weights in the supernet. at is the
current architecture in step t, and WAðatÞ is the weights of
at inherited from the supernet, and only WAðatÞ is opti-
mized in each step t.

Algorithm 1. Greedy Novelty Search

Input: constraints archive M, recent architectures archive C,
selected architecture am, n.
1: Nðam;MÞ calculate the novelty score of am inM based

on Eq. (9);
2: for i ¼ 1; 2; . . . ; n do
3: randomly sample an architecture ar from C;
4: if Nðar;MÞ > Nðam;MÞ then
5: replace am with ar;
6: end if
7: end for

3.2 Constraints Selection Based on Novelty Search

The constraints in Eq. (7) prevent the learning the current
architecture from degrading the performance of previous
architectures as a strategy to overcome multi-model for-
getting in one-shot NAS. However, the number of constraints
in Eq. (7) increases linearly with the step, which makes it

2924 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

intractable to consider all constraints in the optimization.
Therefore, it is more practical to try and select a subset of M
constraints from the previous architectures that forms as close
a feasible region to the original feasible region as possible.
Intuitively, maximizing the diversity of the subset is an effi-
cient way to find the most representative samples from the
previous architectures. Based on this observation and moti-
vated by [2], we propose a surrogate for constraint selection:

maximizeM
X

ai;aj2M
disðai;ajÞ;

s:t: M� fa1:::at�1g; Mj j ¼M;

(8)

where disðai;ajÞ is a function to calculate the distance
between architectures. Further, to solve this equation, we
proposed a greedy novelty search method to maximize the
diversity of the subset. Before the archive is full, all the new
coming architectures are added into the subset. Once full,
the most similar one to the current architecture is chosen to
replace the one that maximizes the novelty score of the
archive. Algorithm 1 sets out a simple implementation of
our greedy novelty search method. A simple and standard
novelty measurement, defined as Nða;MÞ, measures the
mean distance of its k-nearest neighbors inM:

Nða;MÞ ¼ 1

Sj j
X

aj2S
disða;ajÞ

S ¼ kNNða;MÞ ¼ fa1;a2; . . . ;akg:
(9)

In this paper, we measure the difference of the input edges
for each node in an architecture. The input edge of the same
node for two architectures is considered to be the same only
when the two edges have the same input node and the
same operations. M constraint architectures are then
selected from Cj j recent architectures rather than all previ-
ous architectures.

3.3 The NSAS Loss Function

After finding the M most representative architectures
fa1; . . . ;aMg by maximizing diversity, we need to forcibly
optimize the learning of the current architecture in the feasi-
ble region formed by these constraints. A common approach
is to convert the constraints into a soft regularization loss or
apply a replay buffer [2]. The weights of these architectures
in the subset are described as fu1; . . . ; uMg. When the selected
constraints are converted to a soft regularization loss, the loss
function for the constrained optimization problem in Eq. (7)
could be described as:

LNðWAðatÞÞ ¼ ð1� bÞðLcðWAðatÞÞ þ �RðWAðatÞÞÞ
þ b

M

X

i¼1:M
ðLcðWAðaiÞÞ þ �RðWAðaiÞÞÞ;

(10)
where Lc is the cross-entropy loss function, R is the ‘2 regu-
larization term, and b are the trade-offs. The term
LNðWAðatÞÞ is the NSAS loss function. While learning the
current architecture at, NSAS protects the performance of
those constraint architectures by ensuring the shared param-
eters stay in a region of low error for these constraints, as
shown schematically in Fig. 2.

3.4 FromWeight Plasticity Loss (WPL) to NSAS

WPL [5] regularizes the learning of current architecture by
maximizing the posterior probability pðupa; upb ; us j DÞ, where
ua ¼ fupa; usg is the weights of the last architecture, ub ¼
fupb ; usg is the weights of the current architecture, and us is
their shared weights. Unlike WPL, which only considers one
previous architecture, we consider a subset of previously vis-
ited architectures - ua ¼ fu1; . . . ; uMg ¼ fðup1; us1Þ; . . . ; ðupM; usMÞg
- where upi is the private weights, and usi is the weights shared
with the current architecture.When selected constraintsmake
the following two assumptions hold true, then Lemma 1
describes the relationship betweenWPL andNSAS.

Assumption 1. The architectures in the constraint subset cover
all weights of the current architecture at that u

ðeÞ
b � fuðeÞ1 [::: [

u
ðeÞ
M g for every edge e in at, where u

ðeÞ
m is the weight of the opera-

tions assigned to each edge of am.

Assumption 2. There are no shared weights among these con-
straint architectures, i.e., u1 \ u2 ¼ ::: ¼ uM�1 \ uM ¼ ;.

Lemma 1. When the selected constraint architectures satisfy the
above two assumptions, the NSAS loss function with the WPL
can be formulated as:

LNðWAðatÞÞ ¼ LcðWAðatÞÞ þ gLWPLðWAðatÞÞ: (11)

Proof. Since the weights of current architecture ub are shared
by the constraints described in Assumption 1, u

ðeÞ
b �

fuðeÞ1 [::: [uðeÞM g, and for every edge e in at, we have upb ¼ ;.
Further, ui and uj (i; j ¼ 1:::M) are independent as the
architectures are trained separately without shared
weights, as described inAssumption 2. Now the posterior
probability in theWPL can be written as:

pðu j DÞ ¼ pðu1:::uM; ub j DÞ ¼ pðup1:::upM; us1:::u
s
M;DÞ

pðDÞ
¼ pðu1:::uM;DÞ

pðDÞ ¼ pðu1 j u2:::uM;DÞpðu2:::uM;DÞ
pðDÞ

¼
Y

i¼1:M
pðui j DÞ /

Y

i¼1:M
pðD j uiÞpðuiÞ

¼ pðuÞ
Y

i¼1:M
pðD j uiÞ ¼ pðutÞ

Y

i¼1:M
pðD j uiÞ;

(12)

Fig. 2. NSAS loss function ensures that the learning of current architec-
ture will not deteriorate the performance of previous architectures in the
constraint subset.

ZHANG ETAL.: ONE-SHOT NEURAL ARCHITECTURE SEARCH: MAXIMISING DIVERSITY TO OVERCOME CATASTROPHIC FORGETTING 2925

where ui is the weights of architecture ai in the constraint
subset. As only architecture at is trained, pðuÞ ¼ pðutÞ,
where ut is the weights of the current architecture at, and
u is all the considered weights. Eq. (12) derives the poste-
rior probability without the assumption that us in the pre-
vious step is optimal. Hence, now, the WPL to optimize
the posterior probability pðu j DÞ can be expressed as:

LWPLðWAðatÞÞ ¼ �RðWAðatÞÞ þ
X

i¼1:M
LcðWAðaiÞÞ; (13)

where � is the trade-off factor. And the proposed NSAS
loss function with the WPL can be expressed as:

LNðWAðatÞÞ ¼ ð1� bÞðLcðWAðatÞÞ þ �RðWAðatÞÞÞ
þ b

M

X

i¼1:M
ðLcðWAðaiÞÞ þ �RðWAðaiÞÞÞ

¼ LcðWAðatÞÞ þ gLWPLðWAðatÞÞ:

(14)

tu
Lemma 1 demonstrates that the NSAS loss function not

only contains theWPL but also optimizes learning of the cur-
rent architecture when the appropriate constraints have been
selected. Additionally, when a specific number of constraints
for a densely-connected search space are set, the strategy of
selecting constraints based on maximizing diversity has the
potential to see the two assumptions hold true. Take the
search space ofNAS-Bench-201 [17] (as defined in Section 4.2)
as an example. When the number of candidate operations in
each edgeM ¼ 5 and the diversity of the constraint subset is
maximized, those five constraint architectures should cover
all possible operations for all edges (Assumption 1), and each
edge in each constraint architecture should contain different
operations (Assumption 2).

Algorithm 2. One-Shot NAS-NSAS

Input: Dtrain, Dval, W, constraints archive M¼ ;, M , neural
architecture search iteration T , batch size b
for t ¼ 1; 2; . . . ; ðT � sizeðDtrainÞ=bÞ do
2: if sizeðMÞ < M then

sample at based on gradient search or random search,
and update the weightsWAðaÞ by normal loss function,
and add architecture a intoM;

4: else
sample at based on gradient search or random search,
select the architecture am that is most similar to at from
M, and replace am with at to maximize the diversity of
M based on Algorithm 1. Update the weightsWAðaÞ by
our proposed loss function in Eq. (10) or a replay buffer;

6: end if
end for

8: Obtain a� based on Eq. (3) (RandomNAS-NASA) or Eq. (4)
(GDAS-NASA).

3.5 One-Shot NAS With Novelty Search Based
Architecture Selection

We implemented our loss function into two popular one-
shot NAS: RandomNAS [30] and GDAS [16]. Like the most
weight sharing NAS methods, only a single path is trained
in each step of the architecture search phase. Therefore,
incorporating NSAS into RandomNAS is relatively easy.

However, most gradient-based NAS methods, like DARTS
[38], train the whole supernet in each step of the supernet
training, which would violate both the assumptions set out
above. For this reason, we chose GDAS [16] as the gradient
method, which uses the Gumbel-Max trick [24], [41], [55] to
relax the discrete architecture distribution so as to be contin-
uous and differentiable. The argmax function reparameter-
izes the architecture distribution and samples only one
architecture in each supernet training step during the for-
ward pass. The softmax function is applied during the back-
ward pass for architecture learning. Algorithm 2 outlines
the one-shot NAS with the NSAS loss function, called one-
shot NAS-NSAS.

4 EXPERIMENTAL SETTINGS

To evaluate the performance ofNSAS loss function, we com-
pared baseline versions of RandomNAS [30] and GDAS [16]
with our NSAS implementations denoted as RandomNAS-
NSAS and GDAS-NSAS. We considered two different search
spaces: a common search space adopted by most state-of-
the-art one-shot NAS methods [30], [38], and a second NAS-
Bench-201 space [17]. The NAS-Bench-201 dataset was spe-
cifically designed for one-shot NAS research, so it comes
with a guarantee of fair comparison between one-shot NAS
methods. The NAS-Bench-201 search space is much smaller
than the common search space, and, accordingly, the best
test performances for all candidate architectures on all data-
sets were reported with this search space, relieving the
computational concern in the further analysis of one-shot
NAS approaches. We first apply RandomNAS-NSAS and
GDAS-NSAS to search for promising neural architectures in
the common search space and compared the results with the
two baselines and many other current one-shot NAS algo-
rithms. We then further analyzed NSAS loss function with
the NAS-Bench-201 benchmark dataset. Fig. 3 illustrates the
differences between the two different search spaces. In the
next two subsections, we describe the experimental settings
for each of these search spaces.

4.1 One-Shot NAS Common Search Space

The design on the search space is important with NAS, and
a common search space [38] is typically regarded as best for
a fair comparison. The cell structure in this space contains
eight different types of operations: 3� 3 max pooling and
average pooling operation, 3� 3 and 5� 5 separable convo-
lution operation, 3� 3 and 5� 5 dilated separable convolu-
tions operation, identity, and zero. There are seven nodes in
each cell: two input nodes, four operation nodes, and one
output node. The inputs to a cell are the outputs of two of
its former cells, and the output of the cell is the sum of the
outputs of all operation nodes. In a CNN structure, there
are two types of cells with the same search space: a normal
cell anormal and a reduction cell areduce. The reduction cells
are located in the 1/3 and 2/3 depths of the network as
residual blocks. The cell structure is repeatedly stacked to
form the final CNN structure.

The number of cells for the CNN supernet training was
set to only 8. We used the momentum SGD optimizer for
supernet to learn the weights, and an Adam optimizer to
optimize the architecture parameters. The initial learning

2926 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

rate for SGD was set to 0.025 with a cosine schedule to
annealed down to 0. The momentum of SGD and the weight
decay were set to 0.9 and 3� 10�4, respectively. The initial
learning rate for Adam was set to 3� 10�4, and the momen-
tum and weight decay were set to (0.5,0.999) and 10�3,
respectively. The dropout probability was 0.4 with 16 initial
channels. The CIFAR-10 dataset was used as the training
set, divided into two halves at the architecture search stage.
One half was used for the supernet weight learning, and the
other for the architecture parameter optimization. Training
took place with a batch size of 64 to derive the most promis-
ing cell structure. After supernet training and selecting the
promising cells, we stacked 20 cells for full training with a
batch size of 96.

The best-found cell structure with CIFAR-10 was then
transferred to CIFAR-100 with the same hyperparameter
settings as with the CIFAR-10 experiments. We also trans-
ferred the the best-found cell structure to ImageNet follow-
ing the mobile settings in [30], [38], [55], and restricted the
number of FLOPs to less than 600M. The weight decay is
3� 10�5, and the initial SGD learning rate is 0.1 with a
decayed factor of 0.97. The network is stacked by 14 cells
with batch size 128 with 250 epochs training.

As described in the previous Section 3.2 and outlined in
Algorithm 1, one-shot NAS-NSAS selects M architectures
from Cj j previously visited architectures based on Algo-
rithm 1. We set M ¼ 8 and Cj j ¼ 50 for the common CNN
search space. The trade-off in Eq. (10) is set as b ¼ 0:5.

4.2 NAS-Bench-201

The NAS-Bench-201 search space is similar to the recent
cell-based NAS methods [30], [38], which repeatedly stack
computational cells to form the final structure. The architec-
tural skeleton of this search space contains three stages con-
nected by a basic residual block [21]] with a stride of 2
between them. In each stage, the cell structure was stacked
N ¼ 5 times. In this search space, the cell structure is repre-
sented as a densely connected directed acyclic graph (DAG)
with four nodes. There are six different edges between these
nodes, and each edge is associated with five candidate oper-
ations, resulting in 56 ¼ 15625 candidate cell structures. The
candidate operations included: a 1� 1 convolution, 3� 3
convolution, 3� 3 average pooling, skip connection, and
zero. The zero helps to drop the associated edge. The initial
channel c for the supernet was set to 16 and trained with an
SDG optimizer. The learning rate was decayed from 0.025
to 0.001 with a cosine schedule, and the weight decay and

the momentum were set to 0.0005 and 0.9, respectively. We
followed the experimental setup in [17], and trained the
supernet with a batch size of 64. After the architecture
search phase and the most promising architectures in hand,
we directly indexed the test performance of each architec-
ture based on NAS-Bench-201 dataset [17] without training
from scratch.

As described in Section 3.2, another important hyperpara-
meter in our proposed method is the number of constraints
in Eq. (10). Since the search space of NAS-Bench-201 is very
small, we default set M ¼ 2 in this search space, and the
trade-off for the constraints regularization term as b ¼ 0:2.

5 EXPERIMENTS AND RESULTS

Our first set of experiments was to conduct a neural archi-
tecture search on the common search space and compare
with all methods, including our implementations, the base-
lines and a range of current and state-of-the-arts methods.
The in-depth experiments with NSAS loss function and
baselines on the NAS-Bench-201 dataset [17] followed.

5.1 Experimental Results on Common Search
Space

5.1.1 Architecture Search on CIFAR-10

With this experiment, we searched for micro-cell structures
in the search space and formed the final structure by stacking
the cells in series. To compare the performance of one-shot
NAS-NSAS with state-of-the-art NAS methods, we follow
DARTS’s experimental setting in [38]. We conducted the
architecture search several times with different random
seeds to obtain the architectures, and then retrained them to
pick the best architectures based on retraining validation
performance. The comparison results are provided in Table 1
and can be summarized as follows:

� Compared to RandomNAS and GDAS, Random-
NAS-NSAS and GDAS-NSAS greatly improve the
search results. The NSAS loss function decreased
the test errors from 2.85 percent for RandomNAS to
2.59 percent, from 2.93 percent for GDAS to 2.75 per-
cent, demonstrating the effectiveness of NSAS at
improving the predictive ability of the supernet.

� RandomNAS-NSAS’ results were competitive com-
pared to the other NAS methods, with a 2.59 percent
test error and only 489M FLOPs. This is an inspiring
result to validate our strategy for overcoming multi-
model forgetting.

Fig. 3. The search spaces for the two different datasets. (a) The cell structure of a CNN with a common search space takes the two previous cells’
output as the cell inputs. There are four operation nodes in each cell, and each operation node selects two outputs from the former nodes associated
with those operations as inputs. The output of this cell is the sum of the outputs of all operation nodes. (b) The cell in NAS-Bench-201 is a densely-
connected structure, where the operation nodes and output nodes select all former nodes7 with the applied operations as their inputs.

ZHANG ETAL.: ONE-SHOT NEURAL ARCHITECTURE SEARCH: MAXIMISING DIVERSITY TO OVERCOME CATASTROPHIC FORGETTING 2927

� OurNSAS evaluate more architectures during super-
net training, so the search cost is slightly higher than
the baselines. However, it still efficient in the sense
that the supernet training in RandomNAS-NSAS
only took 0.7 GPU days for and only 0.4 GPU days
for GDAS-NSAS.

5.1.2 Convolutional Cell Search With Depth Constraint

to Improve Transferability

In the next experiments, we transferred the best-found archi-
tectures from CIFAR-10 to CIFAR-100 and ImageNet data-
sets to evaluat their transferability. The results on CIFAR-100
are reported in Table 1 and ImageNet are reported in Table 2.

From Tables 1 and 2, we can see that the NSAS loss func-
tion improves the performance of RandomNAS and GDAS
with both datasets. However, although the NSAS methods
yielded remarkable performance with CIFAR-10, the perfor-
mance was not as impressive with CIFAR-100 and ImageNet.
For example, NSAS decrease RandomNAS’ test error from
2.85 to 2.59 percent on CIFAR-10, but only from 17.63 to 17.56
percent with CIFAR-100. Similarly, with ImageNet, the
improvement was only 27.1 to 26.1 percent.More importantly
though, the architectures returned by RandomNAS-NSAS on

CIFAR-10 were competitive, while XNAS [43] was the supe-
rior method with CIFAR100 and ImageNet, thus demonstrat-
ing better transferability. XNAS [43] suggests that the
architectures with “deeper” cell structures should provide
superior performancewith the ImageNet dataset. The authors
also observe thatmostNASmethods usually return shallower
cells with a largerwidth after searching CIFAR-10, noting that
a visualization of the CNN models found from all one-shot
baselines is provided in Appendix 2, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2020.3035351. For
example, the architectures found by PC-DARTS andNSAS on
CIFAR-10 are extremely shallow, which gave excellent results
with CIFAR-10 but poor results with ImageNet. Conversely,
the architectures found by XNAS, PDARTS, and PC-DARTS
on ImageNet were much deeper and the results were impres-
sive.A recent study onneural network optimization [49] gives
a hint as to why most NAS methods prefer wider networks.
The authors observe that width is a key factor affecting the
convergence speed of neural networks, and therefore wider
networks are easier to train. Based on this observation, the
wider (shallower) architecture in the NAS search space
reduces the loss with limited supernet training epochs, and
has a higher probability of being chosen.

TABLE 1
Results With the Existing NAS Approaches on CIFAR-10 and CIFAR-100

Method Test Error (%) Param. FLOPs Search Cost Memory Search
CIFAR-10 CIFAR-100 (M) (M) (GPU Days) Consumption Method

NASNet-A [71] 2.65 17.81 3.3 - 1800 Single path RL
AmoebaNet-A [46] 3.34	0.06 - 3.2 - 3150 Single path EA
Hierarchical Evo [37] 3.75	0.12 - 15.7 - 300 Single path EA
PNAS [36] 3.41	0.09 17.63 3.2 - 225 P Single path SMBO
IRLAS [19] 2.60 - 3.91 - - Single path RL
IRLAS-differential [19] 2.71 - 3.43 - - Single path RL
NAO [39] 3.18 - 10.6 - 1000 Single path Gradient

NAO-WS [39] 3.53 - 2.5 - - Single path Gradient
SETN (T=1K) [15] 2.69 17.25 4.6 606 1.8 Single path Gradient
ENAS [45] 2.89 18.91 4.6 - 0.5 Single path RL
SNAS [55] 2.85	0.02 20.09 2.8 422 1.5 Whole Supernet Gradient
PARSEC [8] 2.86	0.06 - 3.6 485 0.6 Single path Gradient
BayesNAS [70] 2.81	0.04 - 3.4 - 0.2 Whole Supernet Gradient
RENAS [12] 2.88	0.02 - 3.5 - 6 - RL&EA
MdeNAS [69] 2.55 17.61 3.8 599 0.16 Single path MDL
DSO-NAS [67] 2.84	0.07 - 3.0 - 1 Whole Superne Gradient
WPL [5] 3.81 - - - - Single path RL
XNAS [43] 2.57	0.09* 16.34 3.7 596 0.3 - Gradient
PDARTS [11] 2.50 16.63 3.4 532 0.3 - Gradient
PC-DARTS [56] 2.57	0.07 17.11 3.6 557 0.3 - Gradient
Random baseline [38] 3.29	0.15 - 3.2 - 4 - Random
DARTS (1st) [38] 2.94 - 2.9 501 1.5 Whole Supernet Gradient
DARTS (2nd) [38] 2.76	0.09 17.54 3.4 528 4 Whole Supernet Gradient

GDAS [16] 2.93 18.38 3.4 519 0.21 Single path Gradient
GDAS-NSAS 2.75	0.08 18.02	0.05 3.5 528 0.4 Single path Gradient
GDAS-NSAS-C 2.70	0.07 16.70	0.08 3.3 520 0.4 Single path Gradient

RandomNAS [30] 2.85	0.08 17.63 4.3 612 2.7 Single path Random
RandomNAS-NSAS 2.59	0.06 17.56	0.05 3.1 489 0.7 Single path Random
RandomNAS-NSAS-C 2.65	0.05 16.69	0.06 3.5 552 0.7 Single path Random

The first block contains the NAS methods without weight sharing. The approaches in the second block are the one-shot NAS methods. “*” indicates the results
were reproduced with the best-reported cell structures in the original paper but with the same experimental settings as all the other comparators. Methods with
“-” in the CIFAR-100 experiment were not reproduced because either they had different search spaces or did not report their best structures. All models were
trained for 600 epochs, and we trained our best-searched architecture with 3 different random seeds to get the statistical results. “P Single path” means that the
search space progressively increases during the architecture search, while only a single path is trained at each step of supernet training.

2928 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.3035351
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.3035351

These findings suggest that encouraging NAS methods
to search for “deeper” architectures could improve transfer-
ability; hence, our variant ofNSAS-C, NSAS with depth con-
straint. The depth constraint in NSAS-C force NAS to search
for “deeper” architectures. Simply put, the structure of the
architectures are “fixed” to a depth so that the inputs of
each node are the outputs of its previous node and the out-
put of the previous cell. Figs. 4c and 4d show an example.
This way, we only need to determine the operation of each
edge in an architecture. All remaining experimental settings
stay the same. Tables 1 and 2 report the transferability of
the models found by NSAS-C with CIFAR-100 and Image-
Net. Compared to NSAS, the results are excellent. The best
found cells by NSAS-C are shown in Figs. 4c and 4d, with
competitive performance of 2.69, 16.58, and 25.5 percent test
errors on CIFAR-10, CIFAR-100 and ImageNet, respectively.
The codes and trained models are available online.1 From
Table 1, we can see that restricting the architecture depth is
a very effective way of improving the transferability of NAS
methods, e.g., 16.75 percent for GDAS-NSAS compared to
18.02 percent for GDAS with CIFAR-100, and RandomNAS-
NSAS from 17.56 to 16.69 percent. Similarly, as shown in
the ImageNet results in Table 2, NSAS-C again improves

transferability, with improving GDAS-NSAS from 26.7 to
25.9 percent, and RandomNAS-NSAS from 26.2 to 25.5
percent.

5.1.3 Supernet Predictive Ability Comparison

Multi-Model Forgetting in One-Shot NAS. To demonstrate cat-
astrophic forgetting in a neural architecture search, we con-
ducted experiments with a convolutional cell search task.
The results show the differences between weight sharing
and a retraining-based architecture ranking strategy. We
tracked the validation accuracy of inheriting weights for sev-
eral fixed sampled architectures with GDAS and also plotted
the validation accuracy over 100 epochs when retraining
these separate architectures from scratch in Fig. 1. From the
results, we find that the validation accuracy of the architec-
tures that directly inherit weights from the supernet fluctuate
tremendously, making it hard to verify the quality of the
architecture. What is worse is that the architecture ranking
results completely violate the primary hypothesis of weight
sharing NAS, i.e., that architectures with higher validation
performance based on weight sharing should yield better
retraining performance. It is worth noting that the perfor-
mance of the architectures that inherited weights gets even
worse during the supernet training, as shown in Fig. 1.

We also tracked the validation accuracy of weight shar-
ing and retraining during the supernet training with Ran-
domNAS-NSAS and GDAS-NSAS. The results are given in
Fig. 5. We find that the NSAS loss function substantially
alleviates multi-model forgetting with one-shot NAS. The
plots of the validation accuracy with the inherited weight
methods are much smoother, especially for architectures 2,

TABLE 2
Results With Existing Manual-Designed Architectures

and NAS Approaches on the ImageNet Dataset

Method Test Error (%) Param. FLOPs

ImageNet (M) (M)

Inception-v1 [52] 30.2 6.6 1448
MobileNet [23] 29.4 4.2 569
MobileNet V2 [10], [48] 25.3 6.9 585
ShuffleNet 2� (V1) [68] 26.4 5 524
ShuffleNet 2� (V2) [40] 25.1 5 591
NASNet-A [72] 26.0 5.3 564
AmoebaNet-A [46] 25.5 5.1 555
PNAS [36] 25.8 5.1 588

SNAS [55] 27.3 4.3 522
SETN [15] 25.7 5.4 599
PARSEC [8] 26.3 5.5 -
BayesNAS [70] 26.5 3.9 -
MdeNAS [69] 26.8 6.1 595
DSO-NAS [67] 26.2 4.7 571
PDARTS [11] 25.9* 4.9 557
XNAS [43] 25.3*(24.7y) 5.3 590
PC-DARTS [56] 25.7* (25.1y) 5.3 586
DARTS (2nd) [38] 26.7 4.7 574

GDAS [16] 27.5 4.4 497
GDAS-NSAS 26.7 5.1 564
GDAS-NSAS-C 25.9 5.2 565

RandomNAS [30] 27.1 5.4 595
RandomNAS-NSAS 26.1 5.2 581
RandomNAS-NSAS-C 25.5 (24.65y) 5.4 593

The first block contains manually-designed architectures and the NAS methods
without weight sharing. The second block contains one-shot NAS methods. We
trained RandomNAS-NSAS with 52 initial channels C and RandomNAS-
NSAS-CwithC ¼ 50. GDAS-NSAS and GDAS-NSAS-C were set toC ¼ 50,
and the FLOPs were restricted to less than 600M. * indicates that the architec-
ture evaluation is reproduced following the common DARTS [38] setting, same
as remaining methods. y indicates that the architecture evaluation settings are
following PC-DARTS [56], with a warm-up linear learning rate scheduler.

Fig. 4. The best found cells with NSAS and NSAS-C on CIFAR-10.

1. https://github.com/MiaoZhang0525/NSAS_FOR_CVPR.

ZHANG ETAL.: ONE-SHOT NEURAL ARCHITECTURE SEARCH: MAXIMISING DIVERSITY TO OVERCOME CATASTROPHIC FORGETTING 2929

https://github.com/MiaoZhang0525/NSAS_FOR_CVPR

3, and 4. Moreover, performance does not decrease during
supernet training. This is clearly a more reliable method.

Supernet Predictive Ability Comparison. RandomNAS-
NSAS and GDAS-NSAS should also alleviate ranking errors.
The experiments we conducted to verify the architecture
ranking predictions are shown in Figs. 6 and 7. For these
experiments, we sampled four of the best architectures over
four rounds with RandomNAS and RandomNAS-NSAS,
and four randomly sampled from the previous experiment.
Then we individually trained these 12 architectures from
scratch and calculated the correlation between the architec-
ture ranking and the validation accuracy for each of the
weight sharing and retraining approaches. Fig. 6 presents
the Kendall Tau (t) metric [25], [69] of the architecture rank-
ings based on weight sharing and retraining. The results
show the difference in rankings between the normal cross-
entropy loss function and the NSAS loss function. Fig. 7a
gives the final Kendall Tau (t) metric values for RandomNAS
and GDAS with different loss functions after supernet train-
ing. Here, the normal loss function has poor supernet predic-
tive ability, with only t ¼ 0:0909 and t ¼ �0:1818 for
RandomNAS and GDAS, respectively. Although the super-
net trained with the NSAS loss function was not able to pro-
vide identical architecture rankings, the positive correlations
matched the Kendall Tau metrics (t ¼ 0:4242 and t ¼ 0:3030
for RandomNAS-NSAS and GDAS-NSAS, respectively).
From this we surmise that a supernet with better predictive
ability tends to provide architectures with better retraining
performance. Fig. 7b plots the mean retraining validation
accuracy of the sampled architectures with variousmethods.
We found that RandomNAS-NSAS achieved better results
than RandomNAS, further verifying its effectiveness.

5.2 Experimental Results on NAS-Bench-201

Evaluating architectures in one-shot NAS is much more com-
putationally intensive than an architecture search, so most

state-of-the-art one-shot NAS methods only report the results
of their best-found architectures. Comprehensive statistical
analyses of the results are usually also overlooked due to
computational limitations. Several concurrent studies [17],
[27], [60], [62] have tried to address this problem by building
benchmark datasets for NAS.With these datasets, researchers
can analyze their one-shot NAS methods without evaluating
numerous architectures. To analyze our approach in this way,
we chose NASBench-201 [17] as a benchmark evaluation set.
NAS-Bench-201 is easy to use and can be directly applied to
most one-shot NAS algorithms. It also reports the perfor-
mance of all candidate architectures on CIFAR-10, CIFAR-
100, and ImageNet, making it sufficient to evaluate one-shot
NAS algorithms.Wedid not restrict thewidth of architectures
in the NAS-Bench-201 search space because the architectures
are densely connected and have the same depth, making that
constraint somewhat moot. To verify and further analyze the
effectiveness of the NSAS loss function, we conducted three
sets of experiments with this search space: 1) a comparison of
the baselines; 2) a study of the hyperparameter settings; and
3) a study of the constraint selection strategies.

5.2.1 Empirical Comparison With Baselines

The results of the comparison study are presented in Table 3,
and all experimental settings follow [17]. The statistical
results were calculated from independent searches with four
different random seeds. We found the NSAS loss function sig-
nificantly improved the performance of the two baselines.
RandomNAS-NSAS, in particular, achieved a test accuracy
of 92:61%	 0:10 on CIFAR-10 compared to RandomNAS at
only 88:14%	 0:21. Similarly, GDAS-NSAS yielded a test
accuracy of 93:55%	 0:16 on CIFAR-10 compared to the
93:40%	 0:49 of GDAS. Furthermore, the architectures
searched by RandomNAS-NSAS and GDAS-NSAS also per-
formed better when transferred to the larger CIFAR-100 and
ImageNet datasets.

5.2.2 Hyperparameter Study

As described in Eq. (10), the trade-off b and the number of
constraints M are important hyperparameters for the NSAS
loss function LN . we studied the impact of b concurrent
withM.

First, we considered to fix the number of constraints, and
investigated the impact of four different settings of b on

Fig. 5. The validation accuracy during supernet training for four different
architectures with RandomNAS-NSAS and GDAS-NSAS. The solid lines
(“Arch”) indicate the validation accuracy with weights inherited from the
supernet, and the dashed lines (“Arch-R”) represent the validation accu-
racy after retraining.

Fig. 6. The Kendall Tau metric (t) of architecture ranking based on
weight sharing and retraining.

Fig. 7. (a) The architecture ranking differences between retraining and
inheriting weights from a trained supernet with RandomNAS, Random-
NAS-NSAS, GDAS, and GDAS-NSAS (from left to right, respectively).
(b) The mean retraining validation accuracy for the architectures found
through different methods.

2930 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

multi-model forgetting with one-shot NAS. In this experi-
ment, we took the RandomNAS-NSAS withM ¼ 5 as exam-
ple. The results, shown in the last four rows of Table 4,
indicate that using constraints to regularize the supernet
training can greatly improve test performance and, addi-
tionally, that RandomNAS-NSAS is somewhat sensitive to
b. More important, with different number of constraints
(M ¼ 2; 3; 4), the results all demonstrated our regularization
method can enhance the performance, where our Random-
NAS-NSAS with different M and b all outperformed the
baseline.

We then fixed b ¼ 0:2 and varied M, also to analyzed the
impact on forgetting. Given there are only five candidate
operations in the NAS-Bench-201 search space, there are no
shared weights among constraints only when M � 5. The
four settings for M in this experiment were 2, 3, 4, and 5.
From the results, we found that, again, RandomNAS-NSAS
seemed sensitive to the number of constraints, and the
largerM ¼ 5 gave much better results than the other scenar-
ios for RandomNAS-NSAS with CIFAR10, CIFAR-100, and

ImageNet. More interestingly, there was a large perfor-
mance gain between M ¼ 4 and M ¼ 5 with RandomNAS-
NSAS. One underlying reason may be that M ¼ 5 has the
potential to ensure the two assumptions hold true, as dis-
cussed in Section 3.3. Similarly, the tendency also exists in
the remain 2 different b, that increasing the number of con-
strained architectures can enhance the performance. More
details on these results can be found in Table 4.

Overall, Table 4 considered three settings for b and four
settings for M, and presented the results of RadnomNAS-
NSAS on CIFAR-10, CIFAR-100, and ImageNet-16-120. In
general, a larger b and a larger M provided the better
results. In the next subsection, we discuss the benefits of
holding to the two assumptions with NSAS, with respect to
the constrained architecture selection strategy.

5.2.3 Analysis of Constraints Selection

Although we demonstrate the theoretical benefits of the
NSAS loss function in relieving catastrophic forgetting

TABLE 3
Results of One-Shot NAS Baselines on NAS-Bench-201

Method CIFAR-10 CIFAR-100 ImageNet-16-120

Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%)

ENAS [45] 37.51	3.19 53.89	0.58 13.37	2.35 13.96	2.33 15.06	1.95 14.84	2.10
DARTS (1st) [38] 39.77	0.00 54.30	0.00 15.03	0.00 15.61	0.00 16.43	0.00 16.32	0.00
DARTS (2nd) [38] 39.77	0.00 54.30	0.00 15.03	0.00 15.61	0.00 16.43	0.00 16.32	0.00
SETN [15] 84.04	0.28 87.64	0.00 58.86	0.06 59.05	0.24 33.06	0.02 32.52	0.21
RandomNAS [30] 80.42	3.58 84.07	3.61 52.12	5.55 52.31	5.77 27.22	3.24 26.28	3.09
GDAS [16] 90.00	0.21 93.51	0.13 71.14	0.27 70.61	0.26 41.70	1.26 41.84	0.09
RandomNAS* [30] 85.30	0.59 88.14	0.21 62.60	3.56 63.40	4.52 33.60	4.36 33.83	3.17
RandomNAS-NSAS 89.20	0.31 92.61	0.10 68.62	1.94 68.47	1.73 41.17	2.16 41.68	1.91
GDAS* [16] 89.88	0.33 93.40	0.49 70.95	0.78 70.33	0.87 41.28	0.46 41.47	0.21
GDAS-NSAS 89.99	0.29 93.55	0.16 71.17	0.44 70.69	0.33 41.85	1.71 42.14	1.40
“*” indicates that we reproduce the results with same random seeds as our approaches. All results in the first block are from [17]. The hyperparameters M and b
were set to 5 and 0.5 for RandomNAS-NSA, 2 and 0.2 for GDAS-NSAS. We run each scenario for 4 independent times with random seed { 0, 1, 100, 101 } follow-
ing the experimental settings in [17].

TABLE 4
Analysis of One-Shot NAS With Various Settings for b andM on the NAS-Bench-201 Dataset

Method b CIFAR-10 CIFAR-100 ImageNet-16-120

Valid Acc(%) Test Acc(%) Valid Acc(%) Test Acc(%) Valid Acc(%) Test Acc(%)

0 85.30	0.59 88.14	0.21 62.60	3.56 63.40	4.52 33.60	4.36 33.83	3.17
RandomNAS-NSAS 0.2 86.38	4.35 89.58	2.82 63.64	6.36 64.72	4.47 34.68	7.80 34.19	5.72
(M ¼ 2) 0.5 85.13	1.43 88.09	1.23 58.73	6.82 60.77	3.85 31.67	3.58 30.35	4.18

0.8 86.82	2.44 90.14	2.35 64.41	4.34 64.27	3.26 35.06	4.81 34.82	6.06
0 85.30	0.59 88.14	0.21 62.60	3.56 63.40	4.52 33.60	4.36 33.83	3.17

RandomNAS-NSAS 0.2 88.38	4.35 90.74	1.31 63.64	6.36 64.83	4.05 36.53	6.50 36.08	4.68
(M ¼ 3) 0.5 87.93	1.63 91.23	1.03 66.03	3.46 66.17	4.12 38.14	2.76 38.72	3.11

0.8 85.58	2.59 88.78	2.23 64.12	4.55 65.06	3.35 34.80	4.24 34.37	5.57
0 85.30	0.59 88.14	0.21 62.60	3.56 63.40	4.52 33.60	4.36 33.83	3.17

RandomNAS-NSAS 0.2 86.73	1.30 90.64	0.99 62.38	4.57 66.42	1.47 36.68	3.80 37.59	3.72
(M ¼ 4) 0.5 87.13	1.43 91.04	0.43 64.43	4.82 64.77	3.61 36.86	3.70 36.35	4.15

0.8 88.52	0.74 92.04	0.50 67.40	2.22 67.62	1.94 39.91	4.50 40.61	3.51
0 85.30	0.59 88.14	0.21 62.60	3.56 63.40	4.52 33.60	4.36 33.83	3.17

RandomNAS-NSAS 0.2 88.45	0.47 91.36	0.74 65.79	0.59 65.58	0.42 37.69	1.23 37.31	2.42
(M ¼ 5) 0.5 89.20	0.31 92.61	0.10 68.62	1.94 68.47	1.73 41.17	2.16 41.68	1.91

0.8 88.42	0.30 91.56	0.36 66.77	4.83 66.58	4.99 39.53	4.85 38.64	5.13

ZHANG ETAL.: ONE-SHOT NEURAL ARCHITECTURE SEARCH: MAXIMISING DIVERSITY TO OVERCOME CATASTROPHIC FORGETTING 2931

Section 3.3, and the experiments in Sections 5.2.1 and 5.2.2
support these theories, at least for one-shot NAS, is it still
open to debate as to whether these improvements are due
to the constraint selection strategy or simply because of the
regularization. In this section, we further conduct an abla-
tion study to investigate the impact of different architecture
selection strategies.

Directly maximizing the diversity of the constraint sub-
set, as per Section 3.4, easily holds Assumption 2, but it
does not guarantee that Assumption 1 will hold. There-
fore, we devised two variants of the NSAS loss function,
both of which strictly observe the assumptions when
selecting constraints. These are NSAS-G and NSAS-LG.
The difference between the two concerns treatment of the
last architecture. More specifically, with NSAS-G, the con-
straints are generated randomly, maximizing diversity,
but the last constraint uM is generated by complementing
the operations contained in the current architecture at that
have not been covered in the previous constraints. This
means all selected architectures fu1; . . . ; uMg covering all
parameters of at such that ut � fu1 [::: [uMg. With NSAS-
LG, however, the last architecture at�1 is first added into
the subset, and remaining constraints are generated as fol-
lowing NSAS-G. This is to test the common thinking on

catastrophic forgetting that the last architecture deterio-
rates performance the most.

We evaluated all three loss functions - NSAS, NSAS-G,
and NSAS-LG - along with three naive architecture selection
methods added to the RandomNAS and GDAS baseline to
regularize the supernet training. Thus, the six loss functions
were:

� NSAS - which selects constraints through maximiz-
ing diversity.

� NSAS-G - a variant of NSAS described above.
� NSAS-LG - a variant of NSAS described above.
� RG - randomly generates architectures to form the

constraint subspace.
� LoW - only adds the last architecture at�1 to the con-

straint subset.
� LoW-R - adds the last architecture at�1 to the con-

straint subset plus randomly generated constraints.
Tables 5, 6, and 7 show the test accuracies for the CIFAR-

10, CIFAR-100, and ImageNet-16-120 datasets. We set the
number of constraintsM ¼ 2 in this experiment, tomore pre-
cisely investigate the effect of architecture selection and
quantitatively analyze the constraint selection strategies. The
results for one-shot NAS without relieving forgetting are

TABLE 5
Analysis of the One-Shot NAS Methods With Various Constraint Selection Strategies on CIFAR-10

METHOD b NSAS NSAS-G NSAS-LG RG LoW LoW-R

Test Acc(%) Test Acc (%) Test Acc(%) Test Acc(%) Test Acc(%) Test Acc (%)

RandomNAS 0.2 89.58	2.82 91.74	1.16 91.11	2.16 89.24	2.24 90.13	4.25 89.72	3.64
Test Acc(%) 0.5 88.09	1.23 90.37	2.14 91.19	0.79 77.30	19.76 89.86	2.91 86.85	10.29
(88.14	0.21) 0.8 90.14	2.35 92.52	0.48 91.18	1.73 89.53	0.24 89.39	3.88 85.54	7.18
GDAS 0.2 93.55	0.16 93.37	0.27 93.52	0.30 93.29	0.19 93.51	0.14 93.40	0.26
Test Acc(%) 0.5 93.49	0.24 93.51	0.14 93.46	0.27 93.31	0.30 93.47	0.29 93.36	0.21
(93.40	0.49) 0.8 93.32	0.18 93.29	0.29 93.55	0.20 93.40	0.28 93.55	0.20 93.55	0.16

TABLE 6
Analysis of the One-Shot NAS Methods With Various Constraint Selection Strategies on CIFAR-100

METHOD b NSAS NSAS-G NSAS-LG RG LoW LoW-R

Test Acc(%) Test Acc (%) Test Acc(%) Test Acc(%) Test Acc(%) Test Acc (%)

RANDOMNAS 0.2 64.72	4.47 67.22	2.20 66.58	3.43 63.66	3.97 64.06	7.89 60.68	9.04
Test Acc(%) 0.5 60.77	3.85 65.30	3.49 66.74	2.66 47.28	27.17 64.27	6.43 59.47	13.13
(63.40	4.52) 0.8 64.27	3.26 67.83	1.66 66.01	2.94 64.13	0.56 61.37	8.95 58.32	8.82
GDAS 0.2 70.69	0.33 70.49	0.61 70.86	0.90 70.43	0.56 70.53	0.34 70.40	0.51
Test Acc(%) 0.5 70.53	0.30 70.57	0.23 70.69	0.67 70.21	0.44 70.10	0.70 70.25	0.38
(70.33	0.87) 0.8 70.33	0.41 70.28	0.58 70.80	0.55 70.40	0.60 70.78	0.19 70.38	0.45

TABLE 7
Analysis of the One-Shot NAS Methods With Various Constraint Selection Strategies on ImageNet-16-120

METHOD b NSAS NSAS-G NSAS-LG RG LoW LoW-R

Test Acc(%) Test Acc (%) Test Acc(%) Test Acc(%) Test Acc(%) Test Acc (%)

RANDOMNAS 0.2 34.19	5.72 39.58	2.60 37.79	5.11 34.38	5.02 36.32	8.07 30.64	13.19
Test Acc(%) 0.5 30.35	4.18 35.14	3.33 39.81	2.81 31.96	26.53 36.81	5.47 29.11	17.77
(33.83	3.17) 0.8 34.82	6.06 40.14	2.60 38.34	4.65 34.94	2.29 33.75	7.91 28.38	9.84
GDAS 0.2 42.14	1.40 42.26	0.20 41.71	0.57 41.35	0.13 42.16	1.30 41.68	1.18
Test Acc(%) 0.5 42.20	1.31 42.16	1.30 42.29	1.00 42.45	1.07 41.32	1.56 42.20	1.25
(41.47	0.21) 0.8 41.78	0.89 42.21	0.16 41.64	1.01 41.68	0.96 41.84	1.01 41.64	1.21

2932 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

shown in the first column of Tables 5, 6, and 7. All NSAS
methods improved performance but, interestingly, some of
the naive constraint selection methods did as well, which
indicates that overcoming catastrophic forgetting is a promis-
ing research direction for one-shot NAS. For example, LoW
improved performance simply by including the last visited
architecture in the regularization. However, these results also
show the importance of constraint selection strategy, as ran-
domly selecting constraints can reduce performance. We
observed that RG was the worst method in all cases, with a
reduction in test accuracy from 88:14	 0:21 to 77:30%	
19:76 for RandomNAS, and from 93:40	 0:49 to 93:29	 0:19
for GDAS in CIFAR-10.Moreover, the LoW-R strategy of add-
ing more randomly generated constraints into the replay
buffer yielded even worse results than LoW in most cases.
These results suggest that randomly selecting constraints
does not alleviatemulti-model forgettingwith one-shot NAS.

As for the NSAS and its variants, NSAS-G and NSAS-LG,
all improved performance significantly. It is interesting that
NSAS and NSAS-G achieved similar results with GDAS.
This indicates that Assumption 1, which requires the con-
straints to cover all parameters of at, may not be so impor-
tant for relieving catastrophic forgetting with gradient-
based one-shot NAS while holding to this assumption with
RandomNAS did help. Overall, NSAS-G achieved much
better results than NSAS and, in most cases, NSAS-G and
NSAS-LG produced the best results. Thus, simultaneously
considering the last visited architecture and maximizing the
diversity of constraints combined are the two key factors
that need to be addressed to relieve catastrophic forgetting
with both random sampling-based and gradient-based one-
shot NAS.

5.3 Discussion

We can draw several conclusions from this series of
experiments.

� RandomNAS tends to achieve better performance
than GDAS with a common search space, whereas
GDAS outperforms RandomNAS with the NAS-
Bench-201 space no matter the loss function. This
may be because gradient-based methods typically
arrive at the local optimal solution once the supernet
is trained. RandomNAS, however, must perform a
subsequent model selection process using either a
random search or an EA to find a global optimal solu-
tion from the trained supernet. Since common search
spaces are much more complicated than the one in
NAS-Bench-201, a global optimization method will
usually outperform a gradient method, while gradi-
ent-based NAS is more efficient and effective with
simple search spaces.

� It is clear that the NSAS loss function can increase
the predictive ability of the supernet, which, in turn,
greatly improves the performance of the architec-
tures found by RandomNAS and GDAS. However,
supernet training in one-shot NAS is still a problem
with much room for further advancements. Devising
a more appropriate loss function than the status quo
appears to be a promising direction for improving
the performance of one-shot NAS methods.

� Lastly, the ablation study indicates that adding
recently visited architectures into the constraint sub-
set and maximizing its diversity are two efficient
ways to mitigate catastrophic forgetting with one-
shot NAS.

6 CONCLUSION AND FUTURE WORKS

In this paper, we formulated supernet training as a con-
strained optimization problem to reduce some of the nega-
tive impacts of catastrophic forgetting with one-shot NAS,
and multi-model forgetting in particular. Our strategy is to
select a representative subset of constraints with a greedy
novelty search method. Then the supernet training is regu-
larized in a feasible region with a new novelty search-based
architecture selection loss function, i.e., NSAS to overcome
multi-model forgetting.

We implementedNSAS into two one-shot NAS baselines -
RandomNAS and GDAS - and compared the quality of the
architecture selections with and without the new loss func-
tion. The results of experiments on the common search space
of a neural architecture show NSAS and two of its variants
improve the predictive ability of the supernet with both con-
volutional and recurrent cell search. Experiments with the
NAS-Bench-201 dataset also suggest that NSAS can substan-
tially offset performance degradation due to forgetting with
one-shot NAS. In future research, we plan to focus on search-
ing on a latent space by transforming discrete architectures
into continuous representations. Further, we will look to
leveraging expert knowledge with DNN searches to design
architectures with greater transferability.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC under Grant
No. 61702415 and No. 61972315, the Australian Research
Council (ARC) under a Discovery Early Career Researcher
Award (DECRA) No. DE190100626, the Air Force Research
Laboratory, DARPA under Agreement No. FA8750- 19-2-
0501, and the Youth Innovation Promotion Association CAS
(No. 2017210).

REFERENCES

[1] G. Adam and J. Lorraine, “Understanding neural architecture
search techniques,” 2019, arXiv: 1904.00438.

[2] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio, “Gradient based
sample selection for online continual learning,” in Proc. Conf. Neu-
ral Inf. Process. Syst., 2019, pp. 11816–11825.

[3] B. Baker, O. Gupta, R. Raskar, and N. Naik, “Accelerating neural
architecture search using performance prediction,” 2018.

[4] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le,
“Understanding and simplifying one-shot architecture search,” in
Proc. Int. Conf. Mach. Learn., 2018, pp. 550–559.

[5] Y. Benyahia et al., “Overcoming multi-model forgetting,” in Proc.
36th Int. Conf. Mach. Learn., 2019, pp. 594–603.

[6] A. Brock, T. Lim, J. M. Ritchie, and N. J. Weston, “Smash: One-
shot model architecture search through hypernetworks,” in Proc.
Int. Conf. Learni. Representations, 2018.

[7] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architec-
ture search on target task and hardware,” in Proc. Int. Conf. Learn.
Representations, 2019.

[8] F. P. Casale, J. Gordon, and N. Fusi, “Probabilistic neural architec-
ture search,” 2019, arXiv: 1902.05116.

[9] X. Chang, Y. Yu, Y. Yang, and E. P. Xing, “Semantic pooling for
complex event analysis in untrimmed videos,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 8, pp. 1617–1632, Aug. 2017.

ZHANG ETAL.: ONE-SHOT NEURAL ARCHITECTURE SEARCH: MAXIMISING DIVERSITY TO OVERCOME CATASTROPHIC FORGETTING 2933

[10] S. Chen, Y. Liu, X. Gao, and Z. Han, “MobileFaceNets: Efficient
CNNs for accurate real-time face verification on mobile devices,”
in Proc. Chinese Conf. Biometric Recognit., 2018, pp. 428–438.

[11] X.Chen, L. Xie, J.Wu, andQ. Tian, “Progressivedifferentiable architec-
ture search: Bridging the depth gap between search and evaluation,”
in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 1294–1303.

[12] Y. Chen et al., “RENAS: Reinforced evolutionary neural architec-
ture search,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit., 2019, pp. 4782–4791.

[13] X. Cheng et al., “Hierarchical neural architecture search for deep
stereomatching,” inProc. Annu. Conf. Neural Inf. Process. Syst., 2020.

[14] X. Chu, B. Zhang, R. Xu, and J. Li, “Fairnas: Rethinking evaluation
fairness of weight sharing neural architecture search,” 2019, arXiv:
1907.01845.

[15] X. Dong and Y. Yang, “One-shot neural architecture search via
self-evaluated template network,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2019, pp. 3680–3689.

[16] X. Dong and Y. Yang, “Searching for a robust neural architecture
in four GPU hours,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 1761–1770.

[17] X. Dong and Y. Yang, “Nas-bench-201: Extending the scope of
reproducible neural architecture search,” in Proc. Int. Conf. Learn.
Representations, 2020.

[18] T. Elsken, JanH.Metzen, and F.Hutter, “Neural architecture search:
A survey,” J.Mach. Learn. Rese., vol. 20, no. 55, pp. 1–21, 2019.

[19] M. Guo, Z. Zhong, W. Wu, D. Lin, and J. Yan, “IRLAS: Inverse
reinforcement learning for architecture search,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 9013–9021.

[20] Z. Guo et al., “Single path one-shot neural architecture search with
uniform sampling,” in Proc. Eur. Conf. Comput. Vis., Springer, 2020,
pp. 544–560.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 770–778.

[22] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in Proc. NIPS Deep Learn. Representation Learn.
Workshop, 2015.

[23] A. G. Howard et al., “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv: 1704.04861.

[24] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” in Proc. Int. Conf. Learn. Representations, 2017.

[25] M. G. Kendall, “The treatment of ties in ranking problems,” Biome-
trika, vol. 33, no. 3, pp. 239–251, 1945.

[26] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural
networks,” Proc. Nat. Acad. Sci. United States America, vol. 114.
no. 13, pp. 3521–3526, 2017.

[27] A. Klein and F. Hutter, “Tabular benchmarks for joint architecture
and hyperparameter optimization,” 2019, arXiv: 1905.04970.

[28] S.-W. Lee, J.-H. Kim, J. Jun, J.-W. Ha, and B.-T. Zhang, “Overcoming
catastrophic forgetting by incremental moment matching,” in Proc.
31st Int. Conf. Neural Inf. Process. Syst., 2017, pp. 4655–4665.

[29] C. Li et al., “Blockwisely supervised neural architecture search
with knowledge distillation,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2020, pp. 1986–1995.

[30] L. Li and A. Talwalkar, “Random search and reproducibility for
neural architecture search,” in Proc. Assoc. Uncertainty Artif. Intell.,
2019, pp. 367–377.

[31] X. Li et al., “Improving one-shot NAS by suppressing the posterior
fading,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2020, pp. 13836–13845.

[32] X. Li, Y. Zhou, T. Wu, R. Socher, and C. Xiong, “Learn to grow: A
continual structure learning framework for overcoming catastrophic
forgetting,” inProc. Int. Conf.Mach. Learn., 2019, pp. 3925–3934.

[33] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 40, no. 12, pp. 2935–2947, Dec. 2018.

[34] Z. Li, L. Yao, X. Chang, K. Zhan, J. Sun, and H. Zhang, “Zero-shot
event detection via event-adaptive concept relevance mining,”
Pattern Recognit., vol. 88, pp. 595–603, 2019.

[35] D. Lian et al., “Towards fast adaptation of neural architectures
with meta learning,” in Proc. Int. Conf. Learn. Representations, 2020.

[36] C. Liu et al., “Progressive neural architecture search,” in Proc. Eur.
Conf. Comput. Vis., 2018, pp. 19–35.

[37] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuo-
glu, “Hierarchical representations for efficient architecture
search,” in Proc. Int. Conf. Learn. Representations, 2018.

[38] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architec-
ture search,” in Proc. Int. Conf. Learn. Representations, 2019.

[39] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architec-
ture optimization,” in Proc. Advances Neural Inf. Process. Syst.,
2018, pp. 7816–7827.

[40] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient CNN architecture design,” in Proc. Eur.
Conf. Comput. Vis., 2018, pp. 116–131.

[41] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribu-
tion: A continuous relaxation of discrete random variables,” in
Proc. Int. Conf. Learn. Representations, 2017.

[42] J. Mei et al., “Atomnas: Fine-grained end-to-end neural architec-
ture search,” in Proc. Int. Conf. Learn. Representations, 2020.

[43] N. Nayman, A. Noy, T. Ridnik, I. Friedman, R. Jin, and
L. Zelnik-Manor, “XNAS: Neural architecture search with expert
advice,” in Proc. Conf. Neural Inf. Process. Syst., 2019, pp. 1977–1987.

[44] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter,
“Continual lifelong learning with neural networks: A review,”
Neural Netw., vol. 113, pp. 54–71, 2019.

[45] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameter sharing,” in Proc. 35th Int. Conf.
Mach. Learn., 2018, pp. 4095–4104.

[46] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolu-
tion for image classifier architecture search,” in Proc. AAAI Conf.
Artif. Intell., 2019, pp. 4780–4789.

[47] P. Ren et al., “A comprehensive survey of neural architecture
search: Challenges and solutions,” 2020, arXiv: 2006.02903

[48] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

[49] K. A. Sankararaman, S. De, Z. Xu, W. R. Huang, and T. Goldstein,
“The impact of neural network overparameterization on gradient
confusion and stochastic gradient descent,” in Proc. Int. Conf.
Mach. Learn., 2020.

[50] Y. Shu, W. Wang, and S. Cai, “Understanding architectures learnt
by cell-based neural architecture search,” in Proc. Int. Conf. Learn.
Representations, 2020.

[51] P. Singh, T. Jacobs, S. Nicolas, and M. Schmidt, “A study of the
learning progress in neural architecture search techniques,” 2019,
arXiv: 1906.07590.

[52] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE/
CVF Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[53] W. Wang, D. Tran, and M. Feiszli, “What makes training multi-
modal classification networks hard?,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 12695–12705.

[54] C. White, W. Neiswanger, and Y. Savani, “Bananas: Bayesian opti-
mization with neural architectures for neural architecture search,”
2019, arXiv: 1910.11858.

[55] S. Xie, H. Zheng, C. Liu, and L. Lin, “SNAS: Stochastic neural
architecture search,” in Proc. Int. Conf. Learn. Representations, 2019.

[56] Y. Xu et al., “PC-DARTS: Partial channel connections for memory-
efficient architecture search,” in Proc. Int. Conf. Learn. Representa-
tions, 2020.

[57] A. Yang, PedroMEsperança, and F.M. Carlucci, “NAS evaluation is
frustratingly hard,” inProc. Int. Conf. Learn. Representations, 2020.

[58] Z. Yang et al., “Cars: Continuous evolution for efficient neural
architecture search,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2020, pp. 1826–1835.

[59] Q. Yao, J. Xu, W.-W. Tu, and Z. Zhu, “Efficient neural architecture
search via proximal iterations,” in Proc. AAAIConf. Artif. Intell., 2020.

[60] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hut-
ter, “NAS-bench-101: Towards reproducible neural architecture
search,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 7105–7114.

[61] K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M. Salzmann, “Evaluating
the search phase of neural architecture search,” in Proc. Int. Conf.
Learn. Representations, 2020.

[62] A. Zela, J. Siems, and F. Hutter, “NAS-bench-1shot1: Benchmark-
ing and dissecting one-shot neural architecture search,” in Proc.
Int. Conf. Learn. Representations, 2020.

[63] C. Zhang, M. Ren, and R. Urtasun, “Graph hypernetworks for
neural architecture search,” in Proc. Int. Conf. Learn. Representa-
tions, 2019.

[64] M. Zhang, H. Li, S. Pan, X. Chang, Z. Ge, and S. Su, “Differentiable
neural architecture search in equivalent space with exploration
enhancement,” in Proc. 34th Conf. Neural Inf. Process., 2020.

[65] M. Zhang, H. Li, S. Pan, X. Chang, and S. Su, “Overcoming multi-
model forgetting in one-shot NAS with diversity maximization,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 7806–7815.

2934 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

[66] M. Zhang, H. Li, S. Pan, T. Liu, and S. Su, “One-shot neural architec-
ture search via novelty driven sampling,” in Proc. Int. Joint Conf.
Artif. Intell., 2020.

[67] X. Zhang, Z. Huang, N. Wang, S. Xiang, and C. Pan, “You only
search once: Single shot neural architecture search via direct
sparse optimization,” IEEE Trans. Pattern Anal. Mach. Intell., early
access, 2020, doi: 10.1109/TPAMI.2020.3020300.

[68] X. Zhang, X.Zhou,M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proc.
IEEE/CVFConf. Comput. Vis. Pattern Recognit.2018, pp. 6848–6856.

[69] X. Zheng, R. Ji, L. Tang, B. Zhang, J. Liu, and Q. Tian, “Multinomial
distribution learning for effective neural architecture search,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 1304–1313.

[70] H. Zhou, M. Yang, J. Wang, and W. Pan, “Bayesnas: A Bayesian
approach for neural architecture search,” in Proc. Int. Conf. Mach.
Learn., 2019, pp. 7603–7613.

[71] B. Zoph and Q. V. Le, “Neural architecture search with reinforce-
ment learning,” in Proc. Int. Conf. Learn. Representations, 2017.

[72] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transfer-
able architectures for scalable image recognition,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 8697–8710.

Miao Zhang received the PhD degree from the
Beijing Institute of Technology (BIT), China. He is
also working toward the dual PhD degree at the
University of Technology Sydney (UTS). His major
research interests include AutoML, neural architec-
ture search, Bayesian optimization, continual
learning, and deep learning.

Huiqi Li (Senior Member, IEEE) received the
PhD degree from Nanyang Technological Univer-
sity, Singapore, in 2003. She is currently a profes-
sor with the Beijing Institute of Technology. Her
research interests include image processing and
computer-aided diagnosis.

Shirui Pan received the PhD degree in computer
science from the University of Technology Sydney
(UTS),Ultimo, NSW,Australia. He is currently a lec-
turer with the Faculty of Information Technology,
Monash University, Australia. Prior to this, he was a
lecturer with the School of Software, University of
Technology Sydney. His research interests include
data mining and machine learning. To date, he has
published more than 80 research papers in top-tier
journals and conferences.

Xiaojun Chang is currently a faculty member with
the Faculty of Information Technology,MonashUni-
versity, Clayton, VIC, Australia. He is also a distin-
guished adjunct professor with the Faculty of
Computing and Information Technology, King
Abdulaziz University. He is an ARCDiscovery Early
Career Researcher Award (DECRA) Fellow from
2019 to 2021. He has achieved top performance in
various international competitions, such as TREC-
VIDMED, TRECVIDSIN, and TRECVIDAVS.

Chuan Zhou received the PhD degree from the
Chinese Academy of Sciences, in 2013. He won
the outstanding doctoral dissertation of Chinese
Academy of Sciences, in 2014, the best paper
award of ICCS-14, and the Best Student Paper
Award of IJCNN-17. Currently, he is an associate
professor with the Academy of Mathematics and
Systems Science, Chinese Academy of Sciences.
His research interests include socail network analy-
sis and graph mining. To date, he has published
more than 70 papers, including the IEEE Transac-
tions on Knowledge and Data Engineering, ICDM,
AAAI, CIKM, IJCAI, andWWW.

Zongyuan Ge is a full-time senior research fellow
employed by Monash University vice chancellor
and provost office with specific interest and exper-
tise in Medical AI development. He has a strong
background in statistical analysis, machine learn-
ing and computer vision research. So far, he has
publishedmore than 40 peer-reviewed publications
and patents, which are first/senior author. He was
selected as one of the 200 Most Qualified Young
Researchers in Computer and Mathematics by the
Scientific Committee of the Heidelberg Laureate
Forum Foundation in 2017 and received Monash
Exceptional Research Award 2019.

Steven Su (Senior Member, IEEE) received the
PhD degree in control engineering from RSISE
the Australian National University (ANU). He is
currently an associate professor with the Univer-
sity of Technology Sydney (UTS). His research
interests include system modeling and control,
machine learning, wearable health monitoring,
and rehabilitation engineering.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHANG ETAL.: ONE-SHOT NEURAL ARCHITECTURE SEARCH: MAXIMISING DIVERSITY TO OVERCOME CATASTROPHIC FORGETTING 2935

http://dx.doi.org/10.1109/TPAMI.2020.3020300

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

