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Abstract—Pooling plays an important role in generating a discriminative video representation. In this paper, we propose a new

semantic pooling approach for challenging event analysis tasks (e.g., event detection, recognition, and recounting) in long untrimmed

Internet videos, especially when only a few shots/segments are relevant to the event of interest while many other shots are irrelevant or

even misleading. The commonly adopted pooling strategies aggregate the shots indifferently in one way or another, resulting in a great

loss of information. Instead, in this work we first define a novel notion of semantic saliency that assesses the relevance of each shot

with the event of interest. We then prioritize the shots according to their saliency scores since shots that are semantically more salient

are expected to contribute more to the final event analysis. Next, we propose a new isotonic regularizer that is able to exploit the

constructed semantic ordering information. The resulting nearly-isotonic support vector machine classifier exhibits higher

discriminative power in event analysis tasks. Computationally, we develop an efficient implementation using the proximal gradient

algorithm, and we prove new and closed-form proximal steps. We conduct extensive experiments on three real-world video datasets

and achieve promising improvements.

Index Terms—Complex event detection, event recognition, event recounting, semantic saliency, nearly-isotonic SVM

Ç

1 INTRODUCTION

MODERN consumer electronics (e.g., smart phones) have
made video acquisition convenient for the general

public. Consequently, the number of videos freely available
on Internet has been exploding, thanks also to the appear-
ance of large video hosting websites (e.g., YouTube). How
to store, index, classify, recognize, and eventually make
sense of the vast information contained in these videos has
become an important challenge for the computer vision and
multimedia communities [1], [2], [3], [4], and a lot of recent
work has been devoted to this exciting field which we gen-
erally refer as event analysis on untrimmed videos. In this
work we will consider three specific event analysis tasks:
event detection, event recognition, and event recounting.

In event detection, a large number of unseen videos is pre-
sented and a learning algorithmmust rank them according to
their likelihood of containing an event of interest, such as
birthday party or dog show, while in event recognition, we aim to
classify the unseen videos intomultiple pre-defined event cat-
egories. If a video is declared to contain some event, wemight
be interested in knowingwhy, and ask the algorithm to return
“evidences,” which is the goal of event recounting. The key to
many event analysis tasks, including the aforementioned
three, is a compact and discriminative representation of the

video contents. Deep learning approaches, e.g., convolutional
neural networks (CNNs), have become increasingly popular
in this regard. The standard way [5], [6] is to extract local
descriptors using CNNs on each frame of a video clip and
then aggregate video-wise, through either average-pooling or
max-pooling or even more complicated pooling strategies,
e.g., [7], [8]. While effective in reducing size, pooling may
result in the loss of structural or temporal information. On the
other hand, retaining all frame features may not be desirable
either, for computational or statistical reasons, especially in
light of the limited number of training examples.

Instead, in this work we consider an intermediate strat-
egy. We first split each video into multiple shots, and for
each shot we randomly sample one key frame whose
extracted features will be used to represent the entire shot.
Instead of conducting pooling on the shot-level, we priori-
tize the shots according to their “relevance” to the event of
interest. Next, to overcome the small sample size issue due
to limited training data, we propose to train an “informed”
classifier that puts larger weights on more relevant shots.
As we verify in our experimental studies, leveraging this
ordering bias can significantly enhance the discriminative
power of the statistical classifier.

More precisely, in Section 3 we propose a new prioritizing
procedure based on the notion of semantic saliency. Prioritizing
objects according to saliency [9] is ubiquitous in visual tasks
such as segmentation [10] and video summarization [11].
However, instead of borrowing an existing saliency algo-
rithm, we prefer a more “supervised” notion that is closely
related to our event analysis tasks. To this end, we first train
1,534 concept detectors using datasets available online (e.g.,
TRECVID SIN dataset, Google sports [12], UCF101 dataset
[13] and YFCC dataset [14]), resulting in a probability vector
for each shot that indicates the relative presence of individual
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concepts. Then, using the skip-grammodel [15] in natural lan-
guage processing, we pre-learn a relevance vector that meas-
ures the a priori relevance of each concept name with the
textual description (provided inmost video event datasets) of
the event of interest. Lastly, by taking aweighted combination
of the probability vector (likelihood) and the relevance vector
(prior), we obtain the proposed semantic saliency of each
shot. Rearranging the shots according to their saliency scores
yields the desired prioritization.

The prioritized shot-level representations of each video
can then be used to perform event analysis tasks. For event
detection, we feed the prioritized representations into a lin-
ear large margin classifier such as support vector machines
(SVM). Intuitively, shots with higher semantic saliency
scores are expected to be more relevant to the event of inter-
est, hence providing more discriminative information. To
incorporate this carefully constructed order information, we
propose, in Section 4, a new isotonic regularizer that encour-
ages the classifier to put more weights on more salient shots.
Our isotonic regularizer is not convex, but as we show in Sec-
tion 5, the popular proximal gradient algorithm can still be
applied, hence enjoying the strong convergence guarantees
recently established in [16]. The key component, namely the
proximal map of the isotonic regularizer, despite being non-
convex, is solved globally and exactly in linear time through
a sequence of reductions. The final algorithm, which we call
nearly-isotonic SVM (NI-SVM), is very efficient and runs
quickly on large real video datasets. For comparison, we also
propose an alternative convex variant, although its perfor-
mance is found to be inferior.

In Section 6 we extend NI-SVM to the event recognition
task by combining the multiclass support vector machines
with our isotonic regularizer. After properly smoothing the
multiclass hinge loss we can again apply the proximal gra-
dient algorithm, whose per-step complexity scales only line-
arly with the problem size. In Section 7 we show how the
weights of the proposed NI-SVM can be combined straight-
forwardly to define a recounting score, which can then be
used to rank the shots and perform event recounting.

In Section 8 we validate the proposed approach through
extensive experiments conducted on three real-world
unconstrained video datasets (CCV, MED13, MED14), and
achieve promising improvements measured by the mean
average precision. Finally, in Section 9 we conclude the
paper with some future directions. A preliminary version of
this work appeared previously in [17].

2 COMPLEX EVENT ANALYSIS

In this section, we briefly review related works on the three
event analysis tasks that we will study: event detection,
event recognition, and event recounting.

2.1 Event Detection

Event detection refers to the task in which a learning algo-
rithm must rank a large number of unseen videos according
to their likelihood of containing an event of interest [18].
Events are complex, and may be composed of several
scenes, objects, actions, and the rich interactions between
them. On the application side, event detection is the first
important step in video analysis towards automatic

categorization, recognition, search, and retrieval (just to
name a few) hence it has attracted much attention in the
computer vision and multimedia communities.

Complex event detection on unconstrained Internet videos
is very challenging for the following reasons: 1) Unlike pro-
fessional video recordings (e.g., films), the quality of Internet
videos varies considerably, making them difficult to model
statistically; 2) Events are complex and can be ambiguous: the
“wedding shower” event consists of multiple defining con-
cepts such as hugging (action), laughing (action) and veil
(object), and can take place indoors (e.g., in a house) or out-
doors (e.g., in a park), resulting in dramatic intra-class varia-
tions [19]; 3) Positive training examples are very limited. In
the 10Ex competition organized by NIST, only 10 positive
training examples and 5,000 negative examples are provided,
creating a highly imbalanced ranking problem; 4) A video
clip can last from a fewminutes to several hours, with the evi-
dence possibly scattering anywhere, see Fig. 1 for an example.

A decent video event detection system usually consists of
a good feature extraction module and a sophisticated statis-
tical classification module. Various low-level features, e.g.,
SIFT [20], Space-Time Interest Points [21] and improved
dense trajectories [22] have been used. Recently, CNN fea-
tures have shown great promise in video classification [12],
[23], with a number of subsequent improvements. To name
a few, [24] argued that 3D CNNs with small 3� 3� 3 ker-
nels are more suitable for spatiotemporal features such as in
human action recognition; [25] achieved very impressive
performance improvements on event detection by incorpo-
rating a set of latent concept descriptors, appropriately
encoded using the vector of locally aggregated descriptors
(VLAD) method; [26] carried out a thorough investigation
of the influence of various components on event detection,
such as different ways of performing spatial and temporal
pooling and feature normalization, and different choices of
CNN layers and classifiers; [27] proposed a hybrid deep
learning framework that is able to model static spatial infor-
mation, short-term motion, as well as long-term temporal
clues in videos. Similar to those works, our event detection
system also relies on CNN features, however, our focus in

Fig. 1. Two Internet video examples, where the same event “Rock
Climbing” happened in very different time frames. The number in each
frame indicates its saliency score, which describes how this keyframe is
relevant to the specified event. We use this saliency information to priori-
tize the video shot representations.
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this work is on how to semantically pool the CNN features in
a flexible way to improve the end classifier.

It has been observed, see, e.g., [26], that large improve-
ments on detection accuracy can be achieved by pooling the
feature representations carefully and/or using statistically
more powerful classifiers. In the first regard, [28] introduced
student-t mixtures to improve the Fisher vector encoding in
[29] (that is based on Gaussian mixtures); [7] divided each
video (probabilistically) into the composition of several
scenes and performed average pooling over the separate clas-
sifiers for different scene components; [8] performed average
pooling over dynamically selected shots where (combinato-
rial) selection is achieved through latent structural SVM; [30]
also proposed to select important shots using latent structural
SVM but also considered evidence localization to simulta-
neously perform event detection and recounting; lastly, [31]
proposed a simple matching approach to rank hence select
most discriminative fragments. The above-mentioned works
are similar to ours in the sense of prioritizing the shot repre-
sentations in oneway or another. However, we use additional
data that is freely available online to perform the prioritiza-
tion hence reducing the burden of acquiring many labeled
training data, and we introduce a new classifier NI-SVM to
account for the inevitable inaccuracy in prioritization. On the
second regard, which is orthogonal to our work here, a num-
ber of previousworks [2], [32], [33] have considered aggregat-
ing complementary features at the video level while others
considered combining multiple statistical classifiers [34], [35],
[36], including those trying to model the temporal informa-
tion explicitly [37], [38] .

There has also been resurgent interest in incorporating
visual attention to visual tasks, see, e.g., [39] on image cap-
tion generation and [40] on action recognition. These works
share a conceptual similarity to our semantic saliency con-
sideration below but a thorough investigation is beyond the
scope of this work.

2.2 Event Recognition

The goal of event recognition is to classify each test data into
multiple pre-defined event categories. Due to the apparent
similarity, event recognition research has been largely
driven by adapting and extending the advances in the
image recognition field to unconstrained video data.

Indeed, event recognition has been attempted on single
static photos [41], [42], photo collections [43], and uncon-
strained videos [29], [44], [45]. For instance, [41] proposed a
generative model to integrate cues such as scene, object cate-
gories and people to segment and recover the event category
in a single image, while [42] further exploited user context,
location, and user-provided tags and comments on a photo
sharing website. [43] treated a photo collection as time series
data and extended the discriminative hiddenMarkov models
to the multiclass event recognition setting. Similar to our
work, [44] also considered decomposing a complex video
event into several low-level events (which we call concepts).
[44] furthermodeled the relation between concepts and events
through probabilistic graphicalmodels and learned a discrim-
inativemodel by using latent support vectormachines. In con-
trast, we learn the relation between concepts and events
through the skip-gram language model and exploit this infor-
mation to prioritize the video shot representations.

2.3 Event Recounting

In event recounting, we are interested in knowing why a
certain detection/recognition decision, e.g., this video con-
tains the “horse riding competition” event, is made. Usu-
ally, a recounting algorithm is expected to return some
evidences (e.g., sample frames) to support the decision.
Event recounting is very useful since it helps locate the
video segment that contains the event of interest. In order to
recount a multimedia event semantically and comprehensibly,
it is useful to characterize an event as a juxtaposition of vari-
ous semantic concepts, such as actions, scenes and objects,
which are more descriptive and meaningful. Thus, unlike
event detection or recognition, mid-level concept represen-
tations of the video contents, thanks to their interpretability,
are usually preferred to low-level features.

Most existing event recounting approaches focus on the
temporal domain. In [46], [47], the authors apply object and
action detectors or low-level visual features to localize tem-
poral key evidences, and a video-level classifier is trained to
rank the key frames or shots. These approaches built on the
assumption that classifiers that can distinguish positive and
negative exemplars can also be used to distinguish the
informative shots. However, they treat the shots or key
frames equally, which may be dominated by the ubiquitous
but non-informative ones. To overcome this limitation, [37]
formulated the recounting problem as multiple instance
learning, which aims to learn a instance-level event detec-
tion and recounting model by selecting the informative
shots or key frames during the training process. [48] pro-
posed a rule-based recounting approach to collect the evi-
dence, involving human knowledge heavily. In [49], a
generative And-OR graph model is used to represent the
causal relationship between action concepts only. None of
these works explicitly exploited saliency information.
Finally, we mention that the very recent works [50] also con-
sidered a joint framework for event detection and event
recounting simultaneously.

3 PRIORITIZATION USING SEMANTIC SALIENCY

As we mentioned before, a good feature extraction module
is vital for event analysis. Thus we first describe our feature
extraction method. Since not all video shots are equally rel-
evant to the event of interest, we develop in this section a
new prioritization procedure to reorder them. Then in Sec-
tions 4 and 6 we propose the nearly-isotonic SVM classifier
to exploit this ordering information. The overall system
is illustrated in Fig. 2 and we discuss it block by block in
the sequel.

3.1 Feature Extraction

To extract representative features from videos, we first seg-
ment each video intom shots ½v1; . . . ; vm� using the color his-
togram difference as the indication of the shot boundary.
Other segmentation or change-point detection algorithms,
such as [51], may also be used. For simplicity, we randomly
sample one key frame (or, as suggested by an anonymous
reviewer, choose the center frame) from each shot and extract
the frame level CNN descriptors using the architecture of
[52]. The key insight in [52] is that by using smaller convolu-
tion filters (3� 3) and very deep architecture (16 or 19 layers),
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significant improvement on the ImageNet Challenge 2014 can
be achieved. Due to its excellent performance on images, we
therefore choose to apply the same architecture to our video
datasets after sampling key frames. With some abuse of nota-
tion, the extracted CNN features (from fc6, the first fully-con-
nected layer) of all m shots are still written collectively as

½v1; . . . ; vm� 2 IRd�m. In our experiments, we setm as the aver-
age number of keyframes for all videos. For example, in the
TRECVID MED14 dataset, the average number of keyframes
is 51. When the video has more than m shots, we rank these
shots according to their semantic saliency scores and keep the
top m ranked shots. In this way, 9.3 percent shots in
the MEDTest14 dataset are removed.When the video has less
than m shots, we uniformly sample m keyframes from this
video. We do not explicitly model temporal information in
this work, although conceivably it could further aid our
system.

3.2 Concept Detectors

We collect a concept vocabulary of c ¼ 1; 534 concepts from
online available datasets (e.g., TRECVID SIN dataset, Goo-
gle sports [12], UCF101 dataset [13] and YFCC dataset [14]),
each accompanied with an entity description (e.g., rope
climbing, skiing, fencing, diving, playing piano, horse race).
These concepts can be used to aid event analysis. For exam-
ple, we would expect concepts such as horse race and horse
riding to be relevant to the event “horse competition.” Thus
we train a detector/classifier for each concept in the vocabu-
lary. All c concept classifiers/detectors will be applied to
each video shot vj, resulting in a c-dimensional probability
vector p 2 IRc

þ, with the entry pk standing for the (relative)

probability of having the kth concept appear in the shot vj.
Finally, we will combine the probability vector p and the
concept relevance (defined next) to yield the semantic
saliency scores.

3.3 Concept Relevance

Events come with short textual descriptions. For example,
the event dog show in the TRECVID MED14 is defined as “a
competitive exhibition of dogs.” We exploit this textual

information by learning a semantic relevance score between
the event description and the individual concept names
(note that stop words are removed using NLTK [53]). More
precisely, a skip-gram model [15] can be trained using the
English Wikipedia dump (http://dumps.wikimedia.org/
enwiki/). The skip-gram model learns aD-dimensional vec-
tor space representation of words by fitting the joint proba-
bility of the co-occurrence of surrounding contexts on large
unstructured text data, and places semantically similar
words near each other in the embedding vector space. Thus,
it is able to capture a large number of precise syntactic and
semantic word relationships. To learn the vector representa-
tion of short phrases consisting of multiple words, we
aggregate the word embeddings using Fisher vectors [54]
and follow mostly [55] except our embedding vectors are
from the skip-gram model. In the Fisher vector, each phrase
(i.e., a set of words) is described as the gradient of the log-
likelihood of these observations on an underlying probabi-
listic model, and we use vlfeat [56] to generate the Fisher
vector for each phrase. After normalizing the length of the
respective vector representations, we compute the cosine
distance between the event description and each concept
name, resulting in a relevance vector r 2 IRc, where rk meas-
ures the a priori relevance of the kth concept to the event of
interest. Note that the concept relevance vector r is event
dependent, and we repeat the procedure for each event in
our training data.

3.4 Semantic Saliency

Lastly, we define the semantic saliency score of each video
shot as a weighted combination of the concept probability
vector p (the likelihood, different for each video shot, see
Section 3.2) and the concept relevance vector r (the prior,
same for all shots, see Section 3.3)

s :¼ p>r ¼
Xc
k¼1

pkrk: (1)

Repeating this for each shot vj; j ¼ 1; . . . ;m, of a video gen-
erates its saliency vector s ¼ ½s1; . . . ; sm�. Note that this
saliency vector s is event dependent, and we derive it sepa-
rately for each event in our training data. Intuitively, the
saliency score sj evaluates the importance of the jth shot to
the event of interest. The most salient shots are those most
likely to contain the specified event, hence they should carry
more weight in the final classifier boundary. Thus we priori-
tize the shots by reordering them such that

s1 � s2 � � � � � sm; (2)

i.e., the shots are ranked in a descending order of saliency.
Importantly, note that different videos are likely reordered
differently. After prioritization, it is desirable to train an
event classifier that takes this valuable ordering informa-
tion into account, which motivates the isotonic regularizer
that we propose in the next section. Note that all our results
can be extended to a partial ordering, i.e., allowing some
shots to be incomparable (when their scores are very close,
for instance).

The definition of our semantic saliency essentially follows
the zero-shot learning framework of [57]. It is convenient

Fig. 2. Each input video is divided into multiple shots, and each event
has a short textual description. CNN is used to extract features (Section
3.1). ImageNet concept names and skip-gram model are used to derive
a probability vector (Section 3.2) and a relevance vector (Section 3.3),
which are combined to yield the new semantic saliency and used for pri-
oritizing shots in the classifier training (Section 3.4).
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because it is fully automatic. We note that the recent work
[58] proposed a different approach for event detection when
the number of labeled training examples is limited. A poten-
tially superior approach is to extract relevant keyframes
from the positive training exemplars and use these to define
saliency. However, the downside of this alternative is that it
requires some human intervention/labeling.

4 NEARLY-ISOTONIC SUPPORT VECTOR MACHINES

FOR EVENT DETECTION

As described above, we represent each video V i; i ¼ 1; . . . ;

n, as a matrix ½vi1; . . . ; vim�, where vij 2 IRd are the extracted

CNN features from the jth shot. In this section we consider
event detection, that is, decide whether or not a test video
belongs to an event of interest. As the usual practice, we
model the event detection as a binary classification problem,
and we reorder the shot-level CNN features according to
their semantic saliency scores as defined in Section 3.4. The

resulting feature representation is denoted as ~V i ¼
½~vi1; . . . ; ~vim�, to distinguish the original representation V i.

To perform event detection, we then employ the large
margin binary support vector machines

min
W2IRd�m

1

n

Xn
i¼1

‘ðyi; h ~V i;WiÞ þ � �VðWÞ; (3)

where � � 0 is the regularization constant, and the loss
function ‘ : IR� IR! IR measures the discrepancy between

the true label yi 2 f1;�1g and the prediction h ~V i;Wi :¼P
j;k

~V i
jkWjk. For instance, we can use

� the least squares loss: ‘ðy; tÞ ¼ 1
2 ðy� tÞ2;

� the hinge loss: ‘ðy; tÞ ¼ ð1� ytÞþ, where as usual
ðtÞþ :¼ maxft; 0g is the positive part;

� the squared hinge loss: ‘ðy; tÞ ¼ 1
2 ð1� ytÞ2þ;

� the logistic loss: ‘ðy; tÞ ¼ log ð1þ expð�ytÞÞ.
Note that the hinge loss is not differentiable, however,

both the squared hinge loss and the logistic loss can be used
instead as its smooth approximation. In practice, which loss
works best is largely problem and feature dependent. For our
experiments, the squared hinge loss seems to work compara-
blywell. To detect a test video V , we use the usual sign rule

ŷ ¼ signðh ~V ;WiÞ: (4)

The regularizer V in (3) is introduced to induce some
desirable structures on the classifier weight matrix W , and
will play a major role in the sequel. In vanilla SVM,

VðWÞ ¼ kWk2F (the squared Frobenius norm), which penal-
izes large weight matrices to avoid overfitting. Another use-
ful regularizer is VðwÞ ¼ kWk1 (the ‘1-norm, sum of
absolute values), which encourages sparsity hence is effec-
tive for feature selection. However, neither of the above-
mentioned regularizers is able to exploit the order informa-
tion that we carefully constructed in Section 3. In fact, both
of them are invariant to column reorderings. Instead, we
propose below a new isotonic regularizer that respects the
prioritization we performed on the shots using their
saliency scores.

4.1 The Isotonic Regularizer

Let us assume momentarily that d ¼ 1, i.e., there is only a
single feature. This assumption, although unrealistic, sim-
plifies our presentation and will be removed later. As men-
tioned, we want to learn a weight vector that respects the
saliency order in our shot-level features, since more relevant
shots are expected to contribute more to the final detection
boundary. This motivates us to consider the following iso-
tonic regularizer

kwk{ :¼
Xm
j¼2
ðjwjj � jwj�1jÞþ: (5)

To see the rationale behind, let us use the absolute value jwjj
of the weight vector to indicate the contribution of the jth
shot to the final decision rule signðPj vjwjÞ. Since the shots

are arranged in decreasing order of relevance, we would
expect roughly jw1j � jw2j � � � � � jwmj, i.e., the weights (in
magnitude) align well with the saliency order we con-
structed in Section 3.4. If this is the case, the regularizer
kwk{ would be 0, i.e., incurring no penalty. On the other
hand, we pay a linear cost for violating any of the saliency
orders, i.e., if instead jwjj > jwj�1j for some j, we suffer a
cost equal to the difference jwjj � jwj�1j. Clearly, the more
we deviate from a pair of saliency order, the more we are
penalized. Equipping VðwÞ ¼ kwk{ in (3) we obtain a new
classification method which we call the nearly-isotonic SVM
(NI-SVM)

min
W

1

n

Xn
i¼1

‘ðyi; h ~V i;WiÞ þ � � kWk{: (6)

Exploiting order information in statistical estimation has
a long history, see the wonderful book [59] for early applica-
tions. Similar regularizers to (5) have also appeared
recently. For instance, [60] dropped the absolute values in
(5) and considered

kwkþ :¼
Xm
j¼2
ðwj � wj�1Þþ; (7)

while [61] replaced the positive part in (5) with the absolute
value

kwka :¼
Xm
j¼2

���jwjj � jwj�1j
���: (8)

The well-known total variation (semi)norm [62]

kwktv :¼
Xm
j¼2
jwj � wj�1j; (9)

is also widely used in image denoising problems. These
alternative regularizers bear a clear similarity to ours, how-
ever, we believe our formulation (5) is more appropriate for
our setting (see Section 8.2.4 below for empirical verifica-
tion): The weight vector w has signed entries, and the order
we aim to force is one-directional. Indeed, the alternative
regularizer (8) will always incur a cost except when
jwjj ¼ jwj�1j, a condition that is too stringent to be useful
in our setting. Similarly, for two negative entries
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0 > wj > wj�1, the alternative regularizer (7) would incur
an unnecessary penalty wj � wj�1 > 0. The same problem
also occurs for the total variation norm (9). Note that all
four regularizers (5), (7), (8), and (9) are nondifferentiable
while (5) and (8) are also nonconvex. Nevertheless, we can
still design an efficient algorithm for solving NI-SVM (with
regularizer (5)). Before that, however, let us mention how to
extend to multiple features (d > 1).

4.2 Extending to Multiple Features

When d > 1, each video representation V i is a matrix in

IRd�m, hence accordingly the linear classifier we learn is

indexed by the weight matrixW 2 IRd�m. Inspecting the NI-
SVM formulation (6), we note first that the loss term extends

immediately: the standard inner product h ~V i;W i in IRd�m

extends straightforwardly for any d. For the isotonic regu-
larizer, we need to summarize all d importance measures
(each contributed by a feature). There are multiple ways to
achieve this, and we consider two particularly convenient
ones here

kWk{;1 :¼
Xd
i¼1
kWi;:k{ ¼

Xd
i¼1

Xm
j¼2
ðjWi;jj � jWi;j�1jÞþ; (10)

kWk{;2 :¼
Xm
j¼2
ðkW:;jk2 � kW:;j�1k2Þþ; (11)

whereWi;: (resp.W:;j) is the ith row (resp. jth column) of the
matrix W . The first regularizer (10) simply sums the vector
isotonic regularizer along each feature dimension, while the
second regularizer (11) first aggregates the shot-level impor-
tance by computing the euclidean norm of the d weights
and then applies the vector isotonic regularizer on top.
When d ¼ 1, both (10) and (11) reduce to the vector isotonic
regularizer (5), but we expect them to behave differently
when d > 1. The corresponding NI-SVM formulation (6)
with the matrix regularizers (10) and (11) will be called
respectively NI-SVM1 and NI-SVM2.

4.3 A Convex Alternative

The matrix isotonic regularizers (10) and (11) are not con-
vex, making the corresponding NI-SVM1 and NI-SVM2 for-
mulations also nonconvex. In this section we propose a
simple convex alternative, mainly as a comparison baseline
against the above nonconvex formulations.

To this end, we add a nonnegative constraint on the clas-
sifier weight matrixW

min
W�0

1

n

Xn
i¼1

‘ðyi; h ~V i;W iÞ þ � � kWk{; (12)

where kWk{ can be either kWk{;1 (NI-SVM1+) or kWk{;2 (NI-
SVM2+). Note that the convexity in (12) is gained by placing
a restriction on the classifier, which in turn may jeopardize
its prediction performance (verified in our experiments). On
the other hand, the nonnegative constraint encourages a
sparse weight matrix W , in a spirit similar to nonnegative

matrix factorization [63], since our video representation ~V i

is nonnegative as well. This may in turn be beneficial in
interpretation tasks.

4.4 Kernelization

The proposed NI-SVM cannot be directly kernelized due to
the isotonic regularizers (10) or (11), which are not functions
of the ‘2 norm [64]. We mention two indirect ways for ker-
nelization: (1). We can apply the isotonic regularizers on the
dual SVM formulation; (2). For translation-invariant kernels
(e.g., Gaussian), we can approximately derive from the ker-
nel an explicit, finite dimensional, and nonlinear feature
transformation fð�Þ [65]. Applying fð�Þ first to the video rep-
resentations we can proceed to develop NI-SVM as before.
These ideas will be pursued in our future work.

5 SOLVING NI-SVM BY THE PROXIMAL GRADIENT

The matrix isotonic regularizers (10) and (11) are both non-
smooth and nonconvex, making the optimization of the NI-
SVM formulation (6) a very challenging task. Fortunately,
the proximal gradient algorithm (see e.g., [66]) has been
recently extended in [16] to handle “definable” functions
that need not be convex or smooth. In this section we first
briefly recall the proximal gradient algorithm, and then we
show how to efficiently implement its key component (e.g.,
the proximal map) for our NI-SVM formulation.

5.1 The Proximal Gradient (PG)

The proximal gradient algorithm is particularly suitable for
solving the general composite minimization problem

min
w

fðwÞ þ gðwÞ: (13)

For our NI-SVM formulation (6), the loss term corresponds
to the function f and the matrix isotonic regularizer corre-
sponds to the function g. PG performs the following two
steps repeatedly until converging to a critical point [16]

w w� hrfðwÞ; (14)

w Ph
gðwÞ :¼ argmin

z

1

2h
kw� zk22 þ gðzÞ

� �
; (15)

where h > 0 a suitably chosen step size. In essence, (14) is a
usual gradient step w.r.t. f , while (15) is a proximal step w.
r.t. g, known as the proximal map Ph

g . The proximal map is a

natural generalization of the Euclidean projection operator
onto a closed set, and it is well-defined if the function g does
not decrease faster than a quadratic function. For instance,
when g is the ‘1 norm, then Ph

k�k1ðwÞ ¼ signðwÞ � ðjwj � hÞþ is

the well-known soft-shrinkage operator.
Since evaluating the gradient rf is straightforward (for

the nondifferentiable hinge loss, we will see how to approxi-
mate it using the logistic loss in Section 6), the efficiency of
PG (14)-(15) hinges on our capability of computing the prox-
imal map (15) quickly, which itself is a minimization prob-
lem. This is a great advantage of the PG algorithm: it
encapsulates the nonconvexity and nonsmoothness of the
function g entirely into the proximal map (15). If the func-
tion g is “simple” enough so that its proximal map can be
solved in closed-form, then we bypass the nonconvex and
nonsmooth issue completely. This is indeed the case for our
matrix isotonic regularizers (10) and (11), as we demon-
strate next.
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5.2 Proximal Map for the Isotonic Regularizer

In this section we show that the proximal map for both
matrix isotonic regularizers (10) and (11) can be computed
exactly in linear time. This is achieved through a sequence
of reductions.

5.2.1 Reducing to the Vector Case

We first reduce the proximal maps for the matrix isotonic
regularizers (10) and (11)

Ph
k�k{;1ðWÞ :¼ argmin

Z

1

2h
kW � Zk2F þ kZk{;1 (16)

Ph
k�k{;2ðW Þ :¼ argmin

Z

1

2h
kW � Zk2F þ kZk{;2; (17)

to their vector cousin

Ph
k�k{ðwÞ :¼ argmin

z

1

2h
kw� zk22 þ kzk{; (18)

wherew; z 2 IRm and k � k{ is defined in (5).
For (16) this reduction is obvious as kWk{;1 is separable in

rows of the matrix W , so we need only apply (18) to each
row of W independently. For (17) its objective function
expands as follows:

1

2h

Xm
j¼1
kW:;j � Z:;jk22 þ

Xm
j¼2
ðkZ:;jk2 � kZ:;j�1k2Þþ: (19)

Now consider the decomposition Z ¼ QL; where each col-
umn of Q has unit Euclidean norm and L is diagonal with
zi in the ith diagonal. Clearly, the regularizer kZk{;2 only

depends on L, and for fixed L, the first term in (19) is mini-

mized precisely when Q:;j ¼ W:;j

kW:;jk2 for all j. Plugging it back

we can solve the diagonal matrix L ¼ diagðzÞ by

min
z2IRm

1

2h

Xm
j¼1
ðkW:;jk2 � zjÞ2 þ kzk{; (20)

which clearly is in the form of the vector problem (18).
Therefore, we need only focus on the vector proximal

map (18). Note that the isotonic regularizer kwk{ is not con-
vex, thus its proximal map in (18) is not a convex problem.
Nevertheless, we will show how to solve it exactly and glob-
ally in linear time.

5.2.2 Reducing to the Convex Case

Crucially, we observe that the vector isotonic regularizer
kzk{ is invariant to the sign changes of any component zi,

but the quadratic term 1
2h kw� zk22 is minimized when the

signs of w and z match. Thus, at any minimizer of (18) we
must have signðwiÞ ¼ signðziÞ for all i, further reducing the
vector problem (18) to:

Ph
kþk�k{ðjwjÞ :¼ argmin

z

1

2h

���z� jwj���2
2
þ kðzÞ þ kzk{ (21)

¼ argmin
z�0

1

2h

���z� jwj���2
2
þ kzk{; (22)

where jwj is the component-wise absolute value ofw, and

kðzÞ ¼ 0; if z � 0
1; otherwise

�
: (23)

If we can solve (21), now a convex problem thanks to the
nonnegative constraint, then we can immediately recover

Ph
k�k{ðwÞ ¼ Ph

kþk�k{ðjwjÞ � signðwÞ: (24)

(The multiplication on the right-hand side is component-
wise.)

5.2.3 Reducing to the Total Variation Norm

Two elementary observations turn out to be key in solving
(21) efficiently: (a). Under the nonnegative constraint z � 0,
we have

2kzk{ ¼ kzktv þ zm � z1; (25)

which follows from applying the identity 2ðtÞþ ¼ tþ jtj to
each term ðjzjj � jzj�1jÞþ. (b). The function k in (23), i.e., the

nonnegative constraint, is invariant to permutations of the
coordinates.

Denote hðzÞ ¼ zm � z1, and recall from (21) that we need
to solve the proximal map of the function

kðzÞ þ kzk{ ¼ kðzÞ þ 1

2
ðkzktv þ hðzÞÞ: (26)

Then,we have the following decomposition rule,whose proof,
based on [67], can be found in the supplement, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2016.2608901:

Theorem 1. Denote ei the ith canonical basis in IRm. For any
h; g � 0 and for allw 2 IRm,

Ph

kþk�k{þgk�k22
ðwÞ ¼ Ph

gk�k22

h
Ph
k

�
P
h=2
k�ktv
�
P
h=2
h ðwÞ

�	i
; (27)

Ph
kþk�k{þgk�k1ðwÞ ¼ Ph

gk�k1

h
Ph
k

�
P
h=2
k�ktv
�
P
h=2
h ðwÞ

�	i
; (28)

where Ph
kðwÞ ¼ ðwÞþ; (29)

P
h=2
h ðwÞ ¼ wþ h

2
ðe1 � emÞ: (30)

Note that we have also allowed including an addi-
tional squared ‘2 norm or ‘1 norm in the above decompo-
sition. Such flexibility can be very useful in some
applications where it is desirable to avoid overfitting or
to induce sparsity. The key insight in Theorem 1 is that
the computation of the seemingly complicated proximal
maps (c.f. left-hand sides of (27) and (28)) can be accom-
plished by executing, sequentially, some very elementary
proximal maps (c.f. right-hand sides of (27) and (28)). We

have not specified the proximal map of the total variation

norm P
h=2
k�ktv , however, it has a well-known linear time

exact algorithm, see e.g., [68].
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5.2.4 Putting Things Together

We summarize the above reductions and steps in Algorithm
1. Despite the nonconvexity and nonsmoothness, Algorithm
1 computes the proximal maps of the matrix isotonic regu-
larizers (10) and (11) globally and exactly in linear time. It is
clear that each iteration of the proximal gradient costs
OðdmnÞ in time complexity while it costs OðdmÞ in space
complexity.

Conveniently, the proximal gradient Algorithm 1 we
developed above for NI-SVM can be easily recycled for the
convex alternative in Section 4.3, with only a single slight
change: We do not backup or restore the sign (e.g., omitting
lines 14 and 19 in Algorithm 1).

Algorithm 1. Proximal Gradient for NI-SVM

1 Input:W 2 IRd�m, regularization �; g, step size h.
2 repeat
3 W  W � h

n

P
i ‘
0ðyi; h ~V i;WiÞ ~V i; // gradient

4 W  prox row ðW; h; �; gÞ; == for ð10Þ
prox col ðW; h; �; gÞ; == for ð11Þ

�
5 until convergence;
6 Procedure prox_row (W; h; �; g)
7 for j ¼ 1; . . . ; d do
8 Wj;:  prox_vec (Wj;:; h; �; g)
9 Procedure prox_col(W; h; �; g)
10 w ðkW:;1k2; . . . ; kW:;mk2Þ
11 w prox_vec (w; h; �; g)

12 W  W � diag w1
kW:;1k2 ; . . . ;

wm
kW:;mk2

� 	
13 Procedure prox_vec (w; h; �; g)
14 s signðwÞ;w jwj; // omitted for (12)

15 w wþ �h
2 ðe1 � emÞ

16 w P
h�=2
k�ktv ðwÞ

17 w ðwÞþ
18 w ðw� ghÞþ == for ð27Þ

1
1þ2ghw == for ð28Þ

�
19 w s � w; // omitted for (12)

6 MULTICLASS NI-SVM EVENT RECOGNITION

In this section we consider the event recognition problem,
that is, to decide which of the k events does a test video
V ¼ ½v1; . . . ; vm� belong to. Like previous work we model
event recognition as a multiclass classification problem, i.e.,
the label y 2 f1; . . . ; kg. In the following we extend our NI-
SVM formulation (6) to this multiclass setting by following
the work of [69].

For each event e and video V i, following Section 3 we

compute its saliency score vector si;e, which then induces a

permutation matrix Pi;e 2 IRd�m such that V i;e ¼ V iP i;e, i.e.,

we reorder the video representation V i so that its saliency
vector is ordered decreasingly. For each event e we train a

classifier represented asWe 2 IRd�m, and we define the mul-
ticlass loss as

‘i ¼ ‘iðW 1; . . . ;WkÞ (31)

¼ max
e¼1;...;k

hV i;e;Wei � hV i;yi ;Wyii þ 1� 11e¼yi ; (32)

where 11e¼yi ¼
1; if e ¼ yi
0; otherwise

�
is the indicator function.

Clearly the multiclass loss ‘i couples the k classifiers due to
the max operator in (32): it is zero if the true prediction

hV i;yi ;Wyii is larger than any other prediction

hV i;e;Wei; e 6¼ yi by at least a margin of size 1, otherwise we
pay a linear cost w.r.t. the most confusing wrong label.

Now we are ready to present the multiclass NI-SVM

min
W1;...;Wk

1

n

Xn
i¼1

‘iðW 1; . . . ;WkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f

þ
Xk
e¼1

�kWeki;p þ gkWekpp|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
g

: (33)

Depending on whether p ¼ 1 or p ¼ 2, we will denote (33) as
NI-SVMm

1 or NI-SVMm
2 . By adding the nonnegative con-

straint We � 0, we again have a convex alternative, which
will be denoted respectively as NI-SVMm

1þ and NI-SVMm
2þ.

To recognize a test video V , we resort to the max-prediction
rule

ŷ ¼ argmax
e¼1;...;k

hV e;Wei; (34)

where ties are broken arbitrarily. Of course for k ¼ 2, the
multiclass formulation (33) reduces to the binary formula-
tion (6) (with the hinge loss).

We can again optimize the multiclass formulation (33)
using the proximal gradient, except one small problem: the
multiclass hinge loss (32) is not differentiable. Nevertheless,
there is a well-known smoothing technique to get around
this issue, using the following inequality:

m log
Xk
e¼1

expðae=mÞ � m log k � maxfa1; . . . ; akg (35)

� m log
Xk
e¼1

expðae=mÞ: (36)

Therefore, as long as the smoothing parameter m is small,
we can adequately approximate the max function using the
log-sum-exp function, which is clearly differentiable (with
Lipschitz continuous gradient). Applying this technique to
the multiclass loss (32) we get rid of the nonsmoothness of
the loss, and make the proximal gradient applicable again.
Of course, the binary hinge loss can be dealt with analo-
gously, although it is often easier to use simply the squared
binary hinge loss.

As to the proximal map of the regularizer g in (33), we
need only apply the steps in 5.2 independently to each of
the k classifier weightsWe, thanks to separability. The entire
procedure is very similar to Algorithm 1 hence we do not
reproduce the pseudo-code here. It suffices to note that each
iteration costs OðdmnkÞ in time and OðdmkÞ in space.

7 EVENT RECOUNTING USING NI-SVM

As mentioned in Section 2.3, event recounting aims at
providing comprehensible evidences to justify a detection/
recognition decision. Here we present a simple scoring
approach on top of NI-SVM to perform event recounting.
The idea is that the NI-SVM classifier is designed to assign
larger weights to more semantically salient shots, thus it is
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natural to use these weights to compute a recounting score
for each shot. More specifically, for each test video
~V ¼ ½~v1; . . . ; ~vm� that is declared to contain the event of inter-
est, we compute the recounting score for its jth shot as fol-
lows:

RSj ¼ h~vj;wji; j ¼ 1; . . . ;m; (37)

where recall that W ¼ ½w1; . . . ;wm� is the classifier weight
returned by (the binary) NI-SVM. Then, we rank the shots
using the scores RSj above and return the top ones as evi-
dence. Note that our decision rule for event detection is

ŷ ¼ signðh ~V ;WiÞ ¼ sign
Xm
j¼1
RSj

 !
; (38)

hence a shot with a large recounting score RSj is likely to
contribute a lot to or even determine the decision.

A similar scoring approach can be used to recount event
recognition results. Interestingly, in this multiclass scenario,
if a test video is declared to belong to event e, then shots

with large negative scores hvj;we0
j i for all e0 6¼ e can also be

considered as evidences to support event e.

8 EXPERIMENTS

In this section we carry out extensive experiments to vali-
date the proposed approach, on three event analysis tasks:
event detection, event recounting, and event recognition.
Our main goal is to verify that carefully exploiting the order
information given by our semantic saliency, such as in our
proposed nearly-isotonic SVM, can indeed improve the per-
formance relatively.

8.1 Experimental Setup

Let us first describe our experimental setup.

8.1.1 Datasets

We test on the following three real video datasets.

� MED141: The TRECVID MEDTest 2014 dataset con-
tains approximately 100 positive training exemplars
per event, and all events share 	 5,000 negative
training exemplars. The test set has about 23,000 vid-
eos. There are in total 20 events, with descriptions.
To our best knowledge, this is the largest (35,914 vid-
eos in total) public dataset for event analysis.

� MED132: Similar as MED14. Note that 10 of its 20
events overlap with those of MED14.

� CCVsub: The official Columbia Consumer Video
dataset [70] contains 9,317 videos in total with 20
semantic categories, including scenes like “beach,”
objects like “cat,” and events like “baseball” and
“parade.” For our purpose we only use the 15 event
categories. For each event we use its own training
data as positive and all other training data as nega-
tive, totaling 4,659 training videos and 4,658 testing
videos.

8.1.2 Concept Classifier Vocabulary

We pre-train 1,534 concept classifiers using TRECVID SIN
dataset (346 classes), Google sports (478 classes) [12], UCF101
dataset (101 classes) [13] and YFCC dataset (609 classes) [14].
We first extract improved dense trajectory (IDT) features
with the code provided in [22] and encode with the Fisher
vector representation [71]. Then, on top of the extracted low-
level features, the cascade SVM [72] was trained for each
semantic concept. Similarly, we extract the improved dense
trajectory features on all shots of each video in the three video
datasets mentioned in Section 8.1.1 and apply the concept
detectors to derive their semantic representations.

8.1.3 Parameter Tuning

As mentioned in Section 3.1 we use the CNN architecture in
[52] to extract 4,096 features on one keyframe per video
shot. The regularization constants of our method � and g (c.
f. Algorithm 1) are selected using cross-validation from the

range f10�4; 10�3; . . . ; 103; 104g. We will also study the influ-
ence of some of the choices we made in our system, such as
initialization, shot segmentation, concept detectors, frame
sampling, etc.

8.2 Event Detection

In this section, we evaluate the performance of the pro-
posed NI-SVM for complex event detection. According to
the NIST standard, we detect each event separately. For
the two MED datasets, we consider both 100Ex (100 posi-
tive training examples) and 10Ex (10 positive training
examples), which are split by NIST. The CCVsub dataset
does not provide such splits.

8.2.1 Evaluation Metric

According to the NIST standard, we evaluate the event
detection performance by the mean Average Precision
(mAP). Average precision is a single-valued metric approxi-
mating the area under the precision-recall curve, and is
widely used in information retrieval tasks. Denote R as the
number of true relevant videos in a test dataset. At any
index j, let Rj be the number of relevant videos in the top j
list. Then, AP is defined as

AP ¼ 1

R

Xn
j¼1

Rj

j
� Ij; (39)

where Ij ¼ 1 if the jth video is relevant (positive) and 0 oth-
erwise. When all relevant videos are ranked on top of the
irrelevant ones, AP achieves its largest value 1.0. Thus, a
larger AP usually indicates a better performance.

8.2.2 Comparison Under a Single Type of Feature

We first present experimental results on comparing different
configurations in our algorithm. For our NI-SVM formula-
tions we consider both the least squares loss ‘ðy; tÞ ¼ 1

2 ðt�
yÞ2 and the squared3 hinge loss ‘ðy; tÞ ¼ ð1� ytÞ2þ. We use

the subscript 1 and 2 respectively to distinguish the matrix
isotonic regularizers (10) and (11). A further subscript þ is

1. http://nist.gov/itl/iad/mig/med14.cfm
2. http://nist.gov/itl/iad/mig/med13.cfm

3. The convergence guarantee for PG requires the loss to be smooth,
hence excludes the usual hinge loss.
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used to signal the convex alternative in Section 4.3.More pre-
cisely, we compare the following variations:

� LSA: least squares loss with average-pooling on the
video shots. Note that pooling is performed on the
selectedm keyframes, for fairness and efficiency.

� LSM: least squares loss with max-pooling.
� LST: least squares loss without pooling, but the shots

are prioritized according to their saliency scores.
� NI-LS1: least squares loss with isotonic regularizer

(10).
� NI-LS2: least squares loss with isotonic regularizer

(11).
� NI-LS1+: nonnegative convex version of NI-LS1.
� NI-LS2+: nonnegative convex version of NI-LS2.
Similarly, for the squared hinge loss, we replace “LS”

throughout with “SVM”. As suggested in Section 5.2.3, addi-
tional ‘22 and ‘1 regularizers can be incorporated. The perfor-
mance in terms of mAP is reported in Tables 1 and 2, with
further details deferred to Tables 10 to 15 in the supplement,
available online. We remark that our proposed approach
requires additional data (although can be very different from
the training videos) to derive semantic saliency, while most
alternatives we compare to are based on low-level features
only hence do not require additional data.

From the experimental results, we observe:

1) Generally, the nearly isotonic variants (with prefix
NI) perform well, verifying that properly exploiting
the order information can significantly improve the
performance. Moreover, the matrix isotonic regular-
izer (11) (subscript 2) generally performs better than
the matrix isotonic regularizer (10) (subscript 1).

2) The squared hinge loss on average performs better
than the least squares loss, unanimously across all
methods.

3) Additional ‘22-norm regularization (left panel) gener-
ally outperforms additional ‘1-norm regularization

(right panel). We hypothesize that it is because the
CNN features we use are very discriminative hence
sparsity does not help here.

4) The convex variants (with subscript þ) have poorer
performance than the nonconvex counterparts (but
still competitive against average-pooling), possibly
because the nonnegative constraint is too restrictive.
Empirically we also found that the nonconvex var-
iants are quite robust against initializations (random
or using the convex variant), likely because we are
able to solve the proximal maps exactly.

In Fig. 3 we present an example from event “horse riding
competition” to demonstrate our prioritization and seman-
tic saliency. Another example can be found in Fig. 6 of the
supplement, available online.

We further compare to a few recent state-of-the-art alter-
natives that use a single4 type of feature. The results are
shown in Table 3. Note that whenever possible we have
quoted the numbers directly from the references, while if not
available we used code from the respective authors to obtain
the results ourselves. It is clear that the proposed framework
with its best variant NI-SVM2 compares favorably against
the other methods. The improvement is more significant
under the more challenging 10Ex setting, possibly because
the saliency information constructed using additional data is
more pronounced when labeled training examples are lim-
ited. With more labeled training examples (e.g., 100Ex), the
improvement due to NI-SVM starts to diminish, and the
impact of feature or architectural design starts to dominate.

8.2.3 Comparison Against State-of-the-Art Systems

We also compare to some state-of-the-art systems that usu-
ally fuse multiple types of features. For fair comparison, we
have fused the CNN feature and the additional IDT feature
for our method (only in this section). The results are shown

TABLE 1
Performance (mAP) w.r.t. Different Configurations on the TRECVID MEDTest2014 (100Ex),

MEDTest2013 (100Ex) and CCVsub Datasets

‘22 regularized ‘1 regularized

SVMA SVMM SVMT NI-SVM1 NI-SVM1þ NI-SVM2 NI-SVM2þ SVMA SVMM SVMT NI-SVM1 NI-SVM1þ NI-SVM2 NI-SVM2þ

MED14 27.2 24.5 30.1 32.2 30.4 34.4 31.0 26.5 24.9 27.6 29.1 27.8 28.2 26.1

MED13 31.1 29.2 36.0 38.1 36.4 39.2 37.4 31.8 30.9 34.2 35.4 38.2 34.4 32.0

CCVsub 73.8 71.6 75.3 77.9 75.0 78.3 76.8 73.1 71.6 74.5 75.1 74.5 72.9 75.5

Squared hinge loss is used. (Larger mAP is better.)

TABLE 2
Performance (mAP) w.r.t. Different Configurations on the TRECVID MEDTest2014 (100Ex),

MEDTest2013 (100Ex) and CCVsub Datasets

‘22 regularized ‘1 regularized

LSA LSM LST NI-LS1 NI-LS1þ NI-LS2 NI-LS2þ LSA LSM LST NI-LS1 NI-LS1þ NI-LS2 NI-LS2þ
MED14 25.9 23.2 27.3 30.9 28.9 32.9 29.4 25.1 23.6 25.4 27.8 26.2 26.7 24.6
MED13 29.8 28.1 35.6 36.8 35.1 38.3 36.0 30.6 29.5 33.7 34.2 34.1 33.2 30.8
CCVsub 72.7 70.5 74.1 76.7 73.9 77.3 75.7 71.8 70.3 73.5 73.8 73.3 71.6 74.3

Least square loss is used. (Larger mAP is better.)

4. Technically speaking, our method used two types of features: IDT
for deriving the saliency scores and CNN for training the classifier.
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in Table 4, from which we observe tht the proposed system
again performs competitively, especially in the 10Ex setting,
for reasons mentioned before. Note that CNN-Exp [26]
achieved the best performance on MEDTest 2014 (100Ex), at
the expense of employing a more costly kernel SVM classi-
fier while all other methods used linear SVM.

8.2.4 Results w.r.t. Different Isotonic Regularizers

In this section, we compare different isotonic regularizers
that have appeared in the literature:

� kwk{ :¼
Pm

j¼2ðjwjj � jwj�1jÞþ; proposed in this work.

� kwkþ :¼Pm
j¼2ðwj � wj�1Þþ; [60].

� kwka :¼
Pm

j¼2
���jwjj � jwj�1j

���; [61].
� kwktv :¼

Pm
j¼2 jwj � wj�1j; this is the well-known

total variational norm.
All of the above isotonic regularizers are extended to the

matrix setting as illustrated in Section 4.2. Table 5 gives the
performance in terms ofmAP onMED14,MED13 andCCVsub

in terms of 100Ex setting, where we use the least squares loss,
an additional ‘22 regularizer, and the matrix extension (11).
Full details can be found in Figs. 7 to 9 in the supplement,

available online. As expected, our isotonic regularizer k � k{
achieves the best overall performance, likely because it aligns
in themost appropriatewaywith the semantic saliency.

8.2.5 Comparison Against Ranking SVM

We also comparedNI-SVMagainst ranking SVM [74] in terms
of both accuracy and efficiency. The results are reported in
Table 6, from which we observe that the proposed algorithm
significantly outperforms ranking SVM (with average pooling
and ‘22 regularization) in both running time and accuracy
(mAP). Note that ranking SVM is a more direct way to opti-
mize mAP, however, unlike our method, it cannot exploit the
semantic saliency information. Computationally, our proxi-
mal gradient algorithmalso appears to bemuchmore efficient,
thanks to the closed-formproximal steps (cf. Theorem1).

8.2.6 Sensitivity Analysis

Sensitivity w.r.t. Tuning Parameters � and g. We conduct
experiments to assess the sensitivity of NI-SVM w.r.t. the
regularization parameters � and g. We report the results on
MEDTest2014 in Figs. 4a and 4b, and defer the results on
MEDTest 2013 and CCVsub to Figs. 10 and 11 in the supple-
ment, available online. To be more specific, we first fix
g ¼ 1, which is the median of its allowed range of values,
and we record the AP by varying � in Fig. 4a, from which
we observe that the performance is relatively robust against

Fig. 3. Qualitative analysis of the prioritization effect. A positive test video from event “Horse Riding Competition” is used as an example. The first row
shows the original video shots; the second row depicts prioritized video shots, having its weight (in norm) on the bottom left and semantic saliency on
the bottom right; and the third row presents the most salient concepts detected in these shots.

TABLE 3
mAP Comparison Against State-of-the-Art Alternatives That

Use a Single Type of Feature on the TRECVID MEDTest 2014,
MEDTest 2013 and CCVsub Datasets

MED14 MED13 CCVsub

100Ex 10Ex 100Ex 10Ex

LTS [38] 27.5 16.8 34.6 18.2 73.4
SED [37] 29.6 18.4 36.2 20.1 74.7
DP [8] 28.8 17.6 35.3 19.5 74.1
STN [12] 30.4 19.8 37.1 20.4 75.8
C3D [24] 31.4 20.5 36.9 22.2 77.2
MIFS [73] 29.0 14.9 36.3 19.3 –
CNN-Exp [26] 29.7 – – – –
CNN + VLAD [25] 35.7 23.2 40.3 25.6 –
NI-SVM2 34.4 26.1 39.2 26.8 78.3

TABLE 4
mAP Comparison Against State-of-the-Art Systems That

FuseMultiple Types of Features on the TRECVID MEDTest
2014 and MEDTest 2013 Datasets

MED14 MED13

100Ex 10Ex 100Ex 10Ex

C3D [24] + IDT 33.6 22.1 39.5 26.7
CNN-Exp [26] 38.7 – – –
CNN + VLAD [25] 36.8 24.5 44.6 29.8
NI-SVM2 + IDT 38.1 27.2 46.3 31.5
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the parameter �. Generally speaking, the best performance

is obtained when � is in the range of f10�3; 10�2; 10�1g.
Then, we fix � at the median value 1 and test the sensitivity
against the parameter g. The AP with varying g is shown in
Fig. 4b, from which we see that the performance degrades
when g is overly large. The best performance is obtained

when g is in the range of f10�2; 10�1; 100g.
Sensitivity w.r.t. Random Initializations. The formulation

of NI-SVM is nonconvex, hence in theory it could have
multiple local optima. In practice we observed that the
proximal gradient in Algorithm 1 always converged to a
reasonable solution. To test this point, we repeatedly run
Algorithm 1 20 times, each with a different initialization.
We also tried to initialize Algorithm 1 with the (globally)
optimal solution of the convex variant in Section 4.3. The
results in terms of AP on MEDTest 2014 are depicted in
Fig. 4c (and Figs. 12 to 15 in the supplement, available
online). It is clear that the convex variants (with sub-
script +) have stable performance w.r.t. different initiali-
zations, thanks to convexity. The nonconvex variants
exhibit small variations, and if we initialize it by the
solution of the convex variant, we get slightly worse but
stable performance. Overall, Algorithm 1 converged to a
reasonable solution rather quickly.

More sensitivity analysis can be found in the supple-
ment, available online.

8.3 Event Recounting

We conduct experiments on event recounting in this section,
using the scoring method detailed in Section 7. We only con-
sider the event detection setting for succinctness.

8.3.1 Evaluation Metric

Evaluating the performance of event recounting algo-
rithms is challenging for the following reasons: (1) there
is no ground truth information provided; (2) there are

relatively few previous works that can be compared
against. Instead, we compare to a natural baseline as fol-
lows. We first train a video-level event classifier, and
then apply it to the shots to rank them accordingly.
Lastly, the top ranked shots are returned as evidence.
Following the NIST pipeline, we use Amazon Mechani-
cal Turk to invite 10 volunteers for the evaluation pur-
pose. Before evaluation, the volunteers are asked to read
the event description in text, and watch five positive vid-
eos in the training set. Then, our evaluation system ran-
domly chooses 10 positive videos from the test set, and
presents the top evidence shots generated by the baseline
and our proposed method. The judges are asked to
decide if these evidence shots are relevant (true/false),
and which method gives more informative evidence
shots (better/similar/worse). To make fair comparison,
the judges are not aware which shot is generated by
which method during evaluation. Based on the judges’
responses, we consider two metrics: 1) average accuracy,
which is the percentage of relevant evidence shots; 2)
relative performance, which counts judges’ preferences
of the baseline or the proposed approach.

8.3.2 Results

We summarize the average length of the test videos, the
average length of evidence shots returned by our proposed
approach, and the average accuracy derived from the
judge’s responses in Table 7. The results are quite promis-
ing: the proposed approach achieves 91.4 and 85.7 percent
average accuracy by returning only 3.8 and 4.5 percent evi-
dence shots in the original videos, respectively. This clearly
demonstrates that the classifier weights of NI-SVM are rea-
sonable in capturing the relative importance of the individ-
ual shots, in a way that is comprehensible to humans. The
results also seem to indicate that MED14 is more challeng-
ing than MED13.

TABLE 5
mAP Comparison of Different Isotonic Regularizers on
TRECVID MEDTest 2014, MEDTest 2013 and CCVsub

MED14 (100Ex) MED13 (100Ex) CCVsub

kwk{ 34.4 39.2 78.3
kwkþ 29.4 35.0 73.8
kwka 30.3 36.2 75.1
kwktv 31.1 36.9 76.7

TABLE 6
Comparison Against Ranking SVM (RSVM) [74]

MED14 (100Ex) MED13 (100Ex) CCVsub

RSVM NI-SVM2 RSVM NI-SVM2 RSVM NI-SVM2

Training Time 52.8 12.4 49.6 10.7 32.3 8.8
Test Time 1.8 1.3 1.6 1.0 1.2 0.7
mAP 28.8 34.4 34.7 39.2 71.9 78.3

Time is shown in seconds (smaller is better) and mAP is in percentage.

Fig. 4. Performance sensitivity w.r.t. �, g and initialization on the TRECVID MEDTest 2014 dataset.
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The judges’ preferences between the proposed method
and the baseline are averaged and recorded in Table 8. It is
clear that the proposed method is subjectively better for
most events on both datasets.

8.4 Event Recognition

In this section we evaluate the multiclass NI-SVMm pro-
posed in Section 6 for event recognition.

8.4.1 Evaluation Metric

A widely adopted evaluation metric in the multiclass set-
ting is the F1 score, which is simply the harmonic mean

of the recall (r) and precision (p): F1 ¼ 2rp
rþp ; where recall

(r) is the fraction of relevant videos retrieved by the sys-
tem and precision (p) is the fraction of retrieved videos
that are relevant. The F1 scores for different events are
averaged.

8.4.2 Competitors

We compare the following multiclass algorithms:

� SVMm
A : the multiclass SVM [69] with average-pool-

ing on the video shots.
� SVMm

M: the multiclass SVM [69] with max-pooling.

� SVMm
T : the multiclass SVM [69] without pooling, but

the shots are prioritized according to their saliency
scores.

� NI-SVMm
1 : the proposed method with isotonic regu-

larizer (10).
� NI-SVMm

2 : the proposed method with isotonic regu-
larizer (11).

� NI-SVMm
1þ: nonnegative convex version of NI-SVMm

1 .

� NI-SVMm
2þ: nonnegative convex version of NI-SVMm

2 .
We can again add additional ‘1 or ‘

2
2 regularizer, without

any computational cost.
Note that in the multiclass setting, we only use training

videos belonging to some event while recall that in event
detection, for each event we use a lot more training videos
as negatives, especially those that do not belong to any
event. Thus, the results here cannot be directly compared to
the ones in Section 8.2.

8.4.3 Results

The experimental results are tabulated in Table 9, from
which we make the following observations: (1) Similar
as in event detection, average-pooling consistently per-
forms better than max-pooling on all three datasets; (2)
SVMm

T further outperforms average-pooling, verifying
that pooling can also be detrimental for event recogni-
tion, if naively done; (3) The proposed multiclass
NI-SVMm variants achieve the best performance on all
three datasets, confirming again the benefits of exploiting
the semantic ordering information. (4) Additional

‘22-norm regularization generally outperforms additional

‘1-norm regularization, although we found the latter usu-
ally leads to much sparser solution (hence may result in
significantly reduced test time).

9 CONCLUSION

Based on the observation that not all video shots are
equally relevant to an event of interest, in this work we
propose to prioritize the video shots using a novel notion
of semantic saliency. Through a suitable isotonic

TABLE 9
Mean F1 Score (mF1) on MED14, MED13, and CCVsub Datasets

‘22 regularized ‘1 regularized

SVMm
A SVMm

M SVMm
T NI-SVMm

1 NI-SVMm
1þ NI-SVMm

2 NI-SVMm
2þ SVMm

A SVMm
M SVMm

T NI-SVMm
1 NI-SVMm

1þ NI-SVMm
2 NI-SVMm

2þ

MED14 38.4 34.6 39.7 41.3 40.3 44.7 42.2 37.1 35.8 37.9 39.5 38.7 39.8 36.3

MED13 48.5 45.2 49.4 52.6 50.3 53.5 52.1 46.8 45.7 47.3 50.1 51.6 48.2 45.8

CCVsub 81.6 78.7 82.4 84.8 82.6 86.1 85.0 79.8 78.4 81.6 82.3 82.1 81.4 82.6

A larger m F1 indicates better performance.

TABLE 7
Video Statistics and Recounting Accuracy

MED13 MED14

Average Video Length 164.3 seconds 188.4 seconds
Average Shot Length 6.1 seconds 8.3 seconds
Average Accuracy 91.4% 85.7%

TABLE 8
Event Recounting Results on MED13 and MED14

MED14 MED13

ID Better Worse Similar ID Better Worse Similar

E006 7 1 2 E021 7 3 0
E007 9 0 1 E022 3 4 3
E008 6 1 3 E023 6 2 2
E009 7 2 1 E024 6 1 3
E010 8 2 0 E025 5 3 2
E011 6 3 1 E026 7 1 2
E012 7 1 2 E027 6 3 1
E013 4 6 0 E028 7 1 2
E014 6 2 2 E029 5 2 3
E015 4 1 5 E030 4 1 5
E021 7 2 1 E031 8 0 2
E022 3 4 3 E032 7 1 2
E023 5 3 2 E033 8 1 1
E024 6 1 3 E034 5 0 5
E025 6 3 1 E035 4 1 5
E026 7 2 1 E036 6 1 3
E027 4 4 2 E037 5 3 2
E028 6 1 3 E038 4 5 1
E029 5 3 2 E039 4 0 6
E030 4 2 4 E040 7 1 2

Total 117 44 39 Total 114 33 52

For each event, we randomly pick 10 positive test videos and ask 10 judges to
rate better, similar, or worse between the proposed method and the baseline.
The results among judges are averaged.
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regularizer we design the “informed” nearly-isotonic
SVM classifier (NI-SVM) that is able to exploit the care-
fully constructed ordering information. An efficient prox-
imal gradient implementation, with new and closed-form
proximal steps, is developed. We further extend NI-SVM
to the multi-class setting to perform event recognition.
Extensive experiments on three real video datasets are
conducted to validate the proposed algorithms on video
analysis tasks such as event detection, recognition, and
recounting. In the future, we plan to incorporate tempo-
ral and spatial information to define a more refined
notion of saliency. We also plan to explore NI-SVM in
other applications, such as sparse coding with time series
data. Interestingly, the recent work [75], based on a
completely different technique, demonstrated that the
ordering structure (temporal or spatial) can largely
improve sparse coding. It would be very interesting to
see how our isotonic regularizers perform in their setting.

ACKNOWLEDGMENTS

We thank the reviewers and the associate editor for numer-
ous critical comments that largely improved our manu-
script. We thank Mark Schmidt for sharing prettyPlot.
This work was supported by NIH R01GM087694 and
P30DA035778, the Data to Decisions Cooperative Research
Centre www.d2dcrc.com.au, and NSFC (U1509206).

REFERENCES

[1] Z. Ma, Y. Yang, N. Sebe, K. Zheng, and A. G. Hauptmann,
“Multimedia event detection using a classifier-specific intermedi-
ate representation,” IEEE Trans. Multimedia, vol. 15, no. 7,
pp. 1628–1637, Nov. 2013.

[2] A. Tamrakar, et al., “Evaluation of low-level features and their
combinations for complex event detection in open source vid-
eos,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2012,
pp. 3681–3688.

[3] Z. Ma, Y. Yang, N. Sebe, and A. G. Hauptmann, “Knowledge
adaptation with partially shared features for event detection using
few exemplars,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 9, pp. 1789–1802, Sep. 2014.

[4] Y. Yang, F. Nie, D. Xu, J. Luo, Y. Zhuang, and Y. Pan, “A multime-
dia retrieval framework based on semi-supervised ranking and
relevance feedback,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 34, no. 4, pp. 723–742, Apr. 2012.

[5] R. Aly, et al., “The AXES submissions at TrecVid 2013, ” in TREC-
VID 2013.

[6] S.-I. Yu, et al., “Informedia@TRECVID 2014 MED and MER,” in
TRECVID 2014.

[7] L. Cao, Y. Mu, A. Natsev, S.-F. Chang, G. Hua, and J. R. Smith,
“Scene aligned pooling for complex video recognition,” in Proc.
12th Eur. Conf. Comput. Vis., 2012, pp. 688–701.

[8] W. Li, Q. Yu, A. Divakaran, and N. Vasconcelos, “Dynamic pool-
ing for complex event recognition,” presented at the IEEE Int.
Conf. Comput. Vis., Sydney, Australia, 2013.

[9] C. Koch and S. Ullman, “Shifts in selective visual attention:
Towards the underlying neural circuitry,” Human Neurobiology,
vol. 4, pp. 219–227, 1985.

[10] E. Rahtu, J. Kannala, M. Salo, and J. Heikkil€a, “Segmenting salient
objects from images and videos,” in Proc. 11th Eur. Conf. Comput.
Vis., 2010, pp. 366–379.

[11] Y. J. Lee, J. Ghosh, and K. Grauman, “Discovering important peo-
ple and objects for egocentric video summarization,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2012, pp. 1346–1353.

[12] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
F.-F. Li, “Large-scale video classification with convolutional neu-
ral networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2014, pp. 1725–1732.

[13] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101
human actions classes from videos in the wild,” Univ. Central
Florida, Orlando, FL, USA, Tech. Rep. CRCV-TR-12-01, 2012.

[14] B. Thomee, et al., “YFCC100M: The new data in multimedia
research,” Comm. ACM, vol. 59, no. 2, pp. 64–73, 2016.

[15] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proc. Advances Neural Inf. Process. Syst., 2013,
pp. 3111–3119.

[16] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linear-
ized minimization for nonconvex and nonsmooth problems,”
Math. Program. Series A, vol. 146, pp. 459–494, 2014.

[17] X. Chang, Y. Yang, E. P. Xing, and Y. Yu, “Complex event detec-
tion using semantic saliency and nearly-isotonic SVM,” in Proc.
32nd Int. Conf. Mach. Learn., 2015, pp. 1348–1357.

[18] L. Duan, D. Xu, I. W. Tsang, and J. Luo, “Visual event recognition
in videos by learning from Web data,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 9, pp. 1667–1680, Sep. 2012.

[19] F. Wu, Y. Liu, and Y. Zhuang, “Tensor-based transductive learn-
ing for multimodality video semantic concept detection,” IEEE
Trans. Multimedia, vol. 11, no. 5, pp. 868–878, Aug. 2009.

[20] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[21] I. Laptev, B. Caputo, C. Sch€uldt, and T. Lindeberg, “Local veloc-
ity-adapted motion events for spatio-temporal recognition,” Com-
put. Vis. Image Understanding, vol. 108, no. 3, pp. 207–229, 2007.

[22] H. Wang and C. Schmid, “Action recognition with improved
trajectories,” in Proc. IEEE Int. Conf. Comput. Vis., 2013, pp. 3551–
3558.

[23] K. Simonyan and A. Zisserman, “Two-stream convolutional net-
works for action recognition in videos,” in Proc. Advances Neural
Inf. Process. Syst., 2014, pp. 568–576.

[24] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri,
“Learning spatiotemporal features with 3D convolutional
networks,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 4489–
4497.

[25] Z. Xu, Y. Yang, and A. G. Hauptmann, “A discriminative CNN
video representation for event detection,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2015, pp. 1798–1807.

[26] S. Zha, F. Luisier, W. Andrews, N. Srivastava, and R. Salakhutdi-
nov, “Exploiting image-trained CNN architectures for uncon-
strained video classification,” in Proc. 26th British Mach. Vis. Conf.,
2015, pp. 60.1–60.13.

[27] Z. Wu, X. Wang, Y. Jiang, H. Ye, and X. Xue, “Modeling spatial-
temporal clues in a hybrid deep learning framework for video
classification,” in Proc. 23rd ACM Conf. Multimedia Conf., 2015,
pp. 461–470.

[28] M. Nagel, T. Mensink, and C. G. Snoek, “Event Fisher vectors:
Robust encoding visual diversity of visual streams,” in Proc. 26th
British Mach. Vis. Conf., 2015, pp. 178.1–178.12.
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