
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

ZeroNAS: Differentiable Generative Adversarial
Networks Search for Zero-Shot Learning

Caixia Yan, Xiaojun Chang∗, Zhihui Li, Weili Guan, Zongyuan Ge, Lei Zhu, and Qinghua Zheng

Abstract—In recent years, remarkable progress in zero-shot learning (ZSL) has been achieved by generative adversarial networks
(GAN). To compensate for the lack of training samples in ZSL, a surge of GAN architectures have been developed by human experts
through trial-and-error testing. Despite their efficacy, however, there is still no guarantee that these hand-crafted models can
consistently achieve good performance across diversified datasets or scenarios. Accordingly, in this paper, we turn to neural
architecture search (NAS) and make the first attempt to bring NAS techniques into the ZSL realm. Specifically, we propose a
differentiable GAN architecture search method over a specifically designed search space for zero-shot learning, referred to as
ZeroNAS. Considering the relevance and balance of the generator and discriminator, ZeroNAS jointly searches their architectures in a
min-max player game via adversarial training. Extensive experiments conducted on four widely used benchmark datasets demonstrate
that ZeroNAS is capable of discovering desirable architectures that perform favorably against state-of-the-art ZSL and generalized
zero-shot learning (GZSL) approaches. Source code is at https://github.com/caixiay/ZeroNAS.

Index Terms—Differentiable Architecture Search, Generative Adversarial Networks, Zero-shot Learning

F

1 INTRODUCTION

G ENERATIVE Adversarial Networks (GANs) have
shown promising results in generating data that are

indistinguishable from real data [1], [2], [3]. Recently, a trend
has emerged of synthesizing Convolutional Neural Net-
work (CNN) features using GAN architectures, which miti-
gates the lack of unseen samples in zero-shot learning (ZSL)
[4], [5], [6]. Of these methods, f-CLSWGAN [4] is one of the
first attempts to leverage GANs in order to push the ZSL
performance forward. In an attempt to progress this field,
some improved approaches (e.g., LisGAN [7] and AFC-GAN
[8]) that may potentially offer better performance, have been
proposed. However, despite the empirical success of these
approaches, it should be noted that they all rely heavily
on hand-crafted GAN architectures designed by human
experts, meaning that laborious trial-and-error testing is
required (Fig. 1(a)). The instability issue in GAN training
increases the difficulty of architecture design significantly.
Once obtained, these manually designed architectures are
fixed across all diversified data samples and application
scenarios, which can easily lead to sub-optimal results. It
is therefore highly valuable to automatically determine the
GAN architectures customized for each specific ZSL task,
rather than simply adopting a hand-crafted architecture.

Neural Architecture Search (NAS) [9], [10] is an effec-

• C. Yan and Q. Zheng are with Department of Computer Science and
Technology, Xi’an Jiaotong University, Xi’an, China.

• X. Chang is with School of Computing Technologies, RMIT University,
Melbourne, Australia.

• Z. Li is with Shandong Artificial Institute, Qilu University of Technology,
Jinan, China.

• W. Guan and Z. Ge are with Faculty of Information Technology, Monash
University, Melbourne, Australia.

• L. Zhu is with School of Information Science and Engineering, Shandong
Normal University.

Corresponding author: Xiaojun Chang (xiaojun.chang@rmit.edu.au).
Manuscript received October 29, 2020, revised June 23, 2021, accepted
November 8, 2021.

Adversarial

training

Adversarial

training

Adversarial

training

Fixed G

architecture

Fixed D

architecture

Manually

designed

Sampled G

architecture

Fixed D

architecture

CNN search

space

Mixed G

architecture

Mixed D

architecture

MLP search

space

Architecture

weights (G)

Architecture

weights (D)

(b) AutoGAN: G from CNN search space, fixed D architecture, RL search evaluated by inception score

(c) ZeroNAS: G and D both from MLP search space , bi-level differentiable search via adversarial loss

MLP search

space

Manually

designed

Manually

designed

Adversarial

training

Bi-level

optimization
Network

parameters
Network

parameters

Update

(a) Existing GANs for ZSL: G and D designed by human experts with laborious trial-and-error testing

Evaluated by

Inception Score

Controller

Image generation

Reward Inception

network

Update

Weights Weights

Update

Sample

Fig. 1. Comparison of the architecture design and training method of (a)
Existing GANs for ZSL, (b) AutoGAN, (c) ZeroNAS.

tive method of automatic model design that has attracted
increasing research attention in recent years. Most existing
NAS methods focus on discovering state-of-the-art models
for discriminative tasks, such as image classification [11]
and object detection [12]. Some initial attempts have also
been made in recent literature to develop NAS methods
for GANs-based generative tasks. As can be seen from Fig.
1(b), AutoGAN [13] and AGAN [14] are based on Reinforce-
ment Learning (RL), which takes the Inception Score (IS)
of numerous candidate architectures as a reward to update
the controller. The calculation of IS requires hundreds of
images generated by the candidate to be classified by a
pre-trained Inception model [15]. Under this evaluation,
AGAN [14] requires 200 GPUs over six days to find a good
model on CIFAR-10, which is computationally expensive

https://github.com/caixiay/ZeroNAS

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

to a prohibitive extent. To resolve this issue, Doveh et al.
[16] propose DEGAS to exploit the differentiable search
strategy for global latent optimization, resulting in a GAN
search that is both efficient and stable. However, DEGAS is
designed to search for a generator only, and then directly
uses this generator to replace the generator in any given
GAN framework, e.g., CTGAN [17]. This strategy fails to
consider the compatibility between generator and discrim-
inator, which can be adversely affected by the training
instability of GANs. Furthermore, AutoGAN, AGAN and
DEGAS are all designed to search the optimal CNN for real
image generation. Although the searched GAN architectures
allow for the generation of realistic and sharp images condi-
tioned on object categories, these approaches are not yet able
to generate images of sufficient quality to train classifiers, as
suggested by empirical evidences [4]. Thus, it is far from
optimal to directly extend these methods to ZSL tasks for
data augmentation.

To address the above mentioned challenges, we propose
a differentiable generative adversarial network architecture
search method for zero-shot learning, referred to as Ze-
roNAS (Fig. 1(c)). To adapt to the ZSL task, we design a
Multi-Layer Perceptron (MLP) search space for both the
generator and discriminator in order to enable feature syn-
thesis. The MLP search space of ZeroNAS is represented
as a directed acyclic graph, which can be specified as a
MLP network with flexible number of hidden layers and
dimensions. Considering the prohibitively high search cost
of RL-based NAS methods [13], [14], we take advantage of
the efficient differentiable search strategy [11] to jointly learn
the network parameters and architecture weights via bi-
level gradient descent optimization. Moreover, inspired by
the GAN training process, we take the relevance and balance
between the generator and discriminator into consideration,
and further propose to jointly search their architectures
via adversarial training. In each searching iteration, the
discriminator will naturally provide supervision signals for
evaluating and updating the generator architecture; more-
over, the generator can produce fake samples to guide the
optimization of discriminator architecture. Benefiting from
this adversarial training process, the two architectures inter-
act with each other in a way that continually improves both
of their performances. After the searching phase is complete,
we perform edge and operation pruning to derive the final
network by removing redundant paths. Once the optimal
architecture has been found, it can be flexibly plugged into
any existing GAN frameworks for further enhancement of
ZSL/GZSL performance. The contributions of the present
work can be summarized as follows:

• Considering the varieties in datasets and tasks, we
make the first attempt to bring NAS techniques into
the realm of ZSL, and thus propose ZeroNAS to
formulate the GAN architecture design for ZSL as
a NAS problem.

• To endow the architectures with the ability to per-
form feature synthesis, we design an expressive yet
compact MLP search space for both the generator
and discriminator, which allows for the generation
of novel GANs equipped with flexible hidden-layer
dimensions and different kinds of operations.

• Inspired by the GAN parameter training process, we
take advantage of the relevance between generator
and discriminator to enable joint searching of their
architectures via adversarial training.

2 RELATED WORKS

In this section, we briefly review related works on the fields
relevant to our study: Generative Adversarial Networks for
ZSL and Neural Architecture Search.

2.1 Generative Adversarial Networks for ZSL
The previous research literature on zero-shot learning ex-
hibits great diversity. In this section, we focus on the most
relevant methods using generative adversarial networks.
Due to their excellent ability to generate samples, GAN-
based ZSL approaches such as f-CLSWGAN [4] and cycle-
CLSWGAN [18], have achieved significant improvements
in accuracy. A vast majority of the advances made in the
previous literature have emerged from the study of novel
GAN frameworks or losses. Specifically, f-CLSWGAN [4] is
one of the first attempts that leverages Wasserstein GAN [2]
to facilitate ZSL/GZSL tasks. Felix et al. [18] incorporated a
multi-modal cycle consistency loss term into the framework
of [4] that enforces good reconstruction of the original
semantic features from the synthetic visual representations.
Huang et al. [6] combined the GAN architecture with a
non-generative component, i.e., a regressor network, that
interacts with the discriminator through an additional dual
adversarial loss. Moreover, many other GAN frameworks
have been developed for ZSL, such as GAZSL [19], Lis-
GAN [7] and ZSL-ABP [20], which will be introduced and
compared in the experimental part. Despite their empirical
success, it is still difficult for a single hand-crafted model
to achieve consistently good performance across all the
datasets. Inspired by NAS, we present ZeroNAS to auto-
matically find the optimal GAN architectures customized
for different ZSL scenarios.

2.2 Neural Architecture Search
Recent years have witnessed significant progress in the
development of neural architecture search (NAS) [21], [22],
[23], [24], [25] methods, which work to automatically dis-
cover good architectures for image classification [11] or
segmentation [26] tasks. Most existing NAS approaches
apply reinforcement learning [27], [28], evolutionary algo-
rithm [29], [30] or Bayesian optimization [31] approaches
to automatically design neural architectures, which treat
architecture search as black-box optimization problem over
a discrete domain. Despite their impressive empirical per-
formance, however, these architecture search methods are
based on a discrete and non-differentiable search space,
which is computationally expensive. For example, Real et
al. [30] takes 3150 GPU days for the whole evolution to
obtain a state-of-the-art classification model for CIFAR-10
and ImageNet. To improve efficiency, Liu et al. [11] proposed
DARTS, which relaxes the search space so that it is contin-
uous and then uses gradient descent to effectively search
the architecture. More recently, several differentiable NAS
methods built upon [11] have been developed to further im-
prove the performance [32], [33]. Although our work shares

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

a similar differentiable search strategy with these methods,
it also differs from them significantly: while almost all ex-
isting methods focus on discovering state-of-the-art models
for discriminative tasks (e.g., image classification or object
detection), we aim to develop an efficient differentiable NAS
method for generative adversarial networks.

3 THE PROPOSED METHODOLOGY

3.1 Preliminaries
Problem Definition. In the ZSL/GZSL setting, we are given
a seen label set Ys and an unseen label set Yu with a
disjoint constraint, i.e., Ys ∩ Yu = ∅. The visual examples
corresponding to the unseen categories Yu are unavailable
during training; thus, the training dataset consists only of
samples from the seen categories. Letting X s, Cs and Ys
denote the visual, semantic and label space corresponding
to seen categories, the training data can be defined as
Dtr = {(x, y, cy)|x ∈ X s, y ∈ Ys, cy ∈ Cs}, where x denotes
the visual feature of an image produced by a pre-trained
deep neural network and y refers to the corresponding class
label, with cy being the semantic embedding of class y. The
testing set Dte is made up of two subsets, i.e., {Dtes ,Dteu },
where Dtes and Dteu denote the testing samples from seen
and unseen classes respectively. During ZSL testing, only
the samples from Dteu are utilized; by contrast, all the sam-
ples in Dte are utilized for GZSL evaluation. Without loss
of generality, the goal of ZSL/GZSL is to learn a classifier
f : X → Y , which can be specified as f : X u → Yu for ZSL
and f : X s ∪ X u → Ys ∪ Yu for GZSL.
Model Framework. The framework of our model is flexible,
meaning that we can build upon any generative model
developed for ZSL. Due to its simplicity and effectiveness,
we take advantage of the feature generating method f-
CLSWGAN proposed by [4]. More specifically, the generator
G : Z × C → X̃ takes random Gaussian noise z ∈ Z
and class embedding cy (y ∈ Ys) as input, and outputs
the CNN feature x̃ ∈ X̃ of class y. The discriminator
D : X ∪X̃ ×C → R transforms both the real and synthesized
features, along with the corresponding class embeddings,
into a real value in order to distinguish between them.
The generator and discriminator are alternately trained to
compete with each other via the following min-max opti-
mization problem:

min
θg

max
θd
LWGAN (θg, θd) + λLCLS(θg|θ∗c), (1)

where θg and θd refer to the training parameters of G and
D respectively, while θ∗c represents the optimal parameters
of the pre-trained classifier C . LWGAN denotes the loss for
Wasserstein GAN, and LCLS is the classification loss that
enhances the discriminant ability of the synthesized fea-
tures. λ is employed to balance the two losses. To adapt this
framework from manual design to automatic search, we will
elaborate the design of the search space, search algorithm,
and pruning procedures of ZeroNAS in the following parts.

3.2 Search Space for GANs
The search space should cover as many candidate networks
as possible. Unlike AutoGAN and AGAN, which search
for the best CNN architecture, we design the searched

generative adversarial networks in our work as Multi-Layer
Perceptron (MLP) that can adapt to the ZSL task. To satisfy
the requirements of both the generator and discriminator,
the MLP search space is designed to involve hidden layers
with flexible dimensions and different kinds of operations.
As depicted in Figure 2, the network is represented as a
directed acyclic graph G = (V, E) with an ordered sequence
of input and intermediate nodes. Each node vi corresponds
to a latent feature vector fi, while each edge (vi, vj) is
associated with a set of candidate operations O = {o}
that transform vi to vj . The candidate operation set O is
composed of the following operations:

• FC+ReLU • FC+BatchNorm+ReLU+DropOut
• FC+BatchNorm+ReLU • FC+ReLU+DropOut
• FC+LeakyReLU • FC+BatchNorm+LeakyReLU+DropOut
• FC+BatchNorm+LeakyReLU • FC+LeakyReLU+DropOut.

Each intermediate node vj can obtain information from
its previous node vi(i < j) via |O| operation paths. The
output of the mixed operation from node vi to vj can
be formulated as the weighted sum of {o(fi)}, where the
weights are calculated by applying softmax to |O| real-
valued architecture parameters as:

M(vi → vj) =
∑
ok∈O

exp(a
{vi,vj}
k)∑

m exp(a
{vi,vj}
m)

ok(fi), (2)

where a{vi,vj} ∈ R|O| refers to the weight vector that
indicates the importance of different operations associated
with edge (vi, vj), while a{vi,vj}k denotes the kth element
of a{vi,vj}. Subsequently, the feature representation fj that
corresponds to node vj can be obtained by aggregating the
output from all of its predecessors vi(∀i < j). Given the
varying importance of previous nodes, we further incorpo-
rate edge weight parameters with a softmax operation to
characterize the contribution of each predecessor; thus, fj
can be derived as follows

fj =
∑
i<j

exp(b
vj
i)∑

n exp(b
vj
n)

∑
ok∈O

exp(a
{vi,vj}
k)∑

m exp(a
{vi,vj}
m)

ok(fi), (3)

where bvj ∈ Rj−1 collects the weight coefficients corre-
sponding to all in-edges of node vj (e.g., bvji for edge
(vi, vj)(∀i < j)). Without loss of generality, all edge weights
and operation weights can be gathered into parameter sets
α = {a{vi,vj}} and β = {bvj} respectively. Benefiting from
such a densely connected structure with mixed operation,
the search space is relaxed so that it is continuous, thereby
enabling the gradient descent optimization of GAN archi-
tectures.

3.3 Search Algorithm for GANs
Due to the continuous relaxation in Eqs. (2) and (3), both
the network parameters θ and architecture weights ω can
be explicitly involved into a unified gradient descent opti-
mization process, which can be formulated as the following
bi-level optimization problem:

min
ω
Lval(θ∗(ω), ω), s.t. θ∗(ω) = argmin

θ
Ltr(θ, ω), (4)

where Ltr and Lval represent the loss over training set
Dtr and validation set Dval respectively. The formulation

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Vm

C0

V1

Ck

V0 V2

…

…

INPUT NODE
Mixed

Mixed

Mixed

Mixed

Mixed

Mixed
Mixed Mixed

MixedMixed

Mixed

Mixed

Mixed

Mixed

Mixed
operation

OUTPUT NODE

FC
ReLU
NULL

FC
LReLU
NULL

FC
BN

ReLU

FC
BN

LReLU

…

(a) (b)

Fig. 2. The search space of the proposed ZeroNAS: (a) Directed acyclic graph with input nodes C0 · · ·Ck, intermediate nodes V0 · · ·Vm−1 and
output node Vm. (b) Mixed operation composed of predefined candidate operations used for connecting the nodes in directed acyclic graph.

in Eq. (4) can represent NAS on purely discriminant tasks
that use a single network (such as image classification).
However, for generative adversarial networks that comprise
both a generator and discriminator, an additional source of
complexity should be considered to reformulate Eq. (4) as a
bi-level adversarial learning problem:

min
ωg

max
ωd

Lval(θ∗g(ωg), θ∗d(ωd), ωg, ωd),

s.t. θ∗g , θ
∗
d = argmin

θg
argmax

θd
Ltr(θg, θd, ωg, ωd),

(5)

where θg, θd refer to two sets of network parameters and
ωg = {αg, βg}, ωd = {αd, βd} denote the architecture
weights with respect to the generator and discriminator,
respectively. In the lower-level stage, we aim to learn the
optimal generator and discriminator parameters, i.e., θ∗g and
θ∗d, given the specific architecture ωg and ωd. In the upper-
level stage, moreover, the optimal weights for any pair of
architectures {ωg, ωd} can be obtained through adversarial
training conditioned on the learned network parameters θ∗g
and θ∗d.

Given that the inner optimization of network parame-
ters outlined in Eq. (5) is time-consuming, we employ a
simplified searching strategy to optimize the four sets of
parameters in an alternative manner; namely, one in which
each set is optimized with the other three sets frozen in each
iteration. More specifically, the parameters in {ωd, θd} can
be optimized with the following losses respectively:

Ld
val(ωd) =− Exval∼pdata

[D(xval, cvaly |ωd, θ
∗
d)]+

Ezval∼pz
[D(G(zval, cvaly |ω∗

g , θ
∗
g), c

val
y |ωd, θ

∗
d)]+

γE[(‖∇x̂valD(x̂val, cvaly |ωd, θ
∗
d)‖ − 1)2],

(6)

Ldtr(θd) =− Extr∼pdata
[D(xtr, ctry |ω∗d, θd)]+

Eztr∼pz [D(G(ztr, ctry |ω∗g , θ∗g), ctry)|ω∗d, θd)]+
γE[(‖∇x̂trD(x̂tr, ctry |ω∗d, θd)‖ − 1)2],

(7)

where (xval, y, cvaly) ∈ Dval and (xtr, y, ctry) ∈ Dtr denote
the validation and training data respectively, as sampled
from the real data distribution pdata; zval and ztr refer to
the random noise vector for validation and training respec-
tively, as sampled from Gaussian distribution pz ∼ N (0, 1);
x̂ = ηx + (1 − η)G(z, cy|ωg, θg) with η ∼ U(0, 1); γ is a

Algorithm 1 ZeroNAS Architecture Search for GANs.

Input: Training set Dtr and validation set Dval; Loop num-
ber in an epoch Niter ; batch size nb; iteration number of
D in a loop nd.

1: Initialize parameters: θd, θg, ωd, ωg
2: while not converging do
3: for iter = 1, 2, · · · , Niter do
4: for i = 1, 2, · · · , nd do
5: Sample nb data from Dval and nb noise vectors

from pz as validation data;
6: Update ωd using Eq. (6) on validation data: ωd ←

Adam(∇ωd
Ldval, ωd);

7: Sample nb data from Dtr and nb noise vectors
from pz as training data;

8: Update θd using Eq. (7) on training data: θd ←
Adam(∇θdLdtr, θd);

9: end for
10: Update ωg using Eq. (8) on validation data: ωg ←

Adam(∇ωg
Lgval, ωg);

11: Update θg using Eq. (9) on training data: θg ←
Adam(∇θgL

g
tr, θg)

12: end for
13: end while
Output: Optimal architecture weights ωd, ωg

trade-off parameter. In a similar fashion, the parameters in
{ωg, θg} can be optimized as follows:

Lgval(ωg) =− Ezval∼pz [D(G(zval, cvaly |ωg, θ∗g), cvaly |ω∗d, θ∗d)]−
λEzval∼pz [logP (y|G(z

val, cvaly |ωg, θ∗g); θ∗c)],
(8)

Lgtr(θg) =− Eztr∼pz [D(G(ztr, ctry |ω∗g , θg), ctry |ω∗d, θ∗d)]−
λEztr∼pz [logP (y|G(ztr, ctry |ω∗g , θg); θ∗c)],

(9)

where P (y|G(z, cy|ωg, θg); θ∗c) indicates the probability of
the synthesized feature G(z, cy|ωg, θg) being predicted as its
true class label y. The ZeroNAS architecture search process
is briefly summarized in Algorithm 1.

3.4 Pruning, Training and Inference
Given an arbitrary dataset for ZSL, we first perform the
procedures in Algorithm 1 to search for the optimal GAN

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

architecture. Once the training of architecture weights is
complete, we can then derive the compact architecture by
pruning the redundant paths. The pruning consists of two
stages, namely edge pruning and operation pruning. In the
first stage, for each intermediate node, we retain only two
connections to its previous nodes; these connections are
selected to be the edges with the top two highest weights.
In the second stage, we prune the corresponding operations
for each retained edge and choose the operation with the
highest weight among all candidate operations. In this way,
we can derive the final structure for both the generator
and discriminator based on the learned edge and operation
weights to form a complete GAN architecture.

To evaluate the final selected architectures, we employ
the entire training set to train the architectures from scratch
and then evaluate them on the test set. After training,
we feed the unseen class embeddings and random noise
into the generator so that it can be generalized to unseen
classes. Given an unseen class y, the generator can synthe-
size an arbitrary number of CNN features X̃ = {x̃} with
x̃ = G(z, cy; θ

∗
g) to solve the data scarcity problem (where

θ∗g denotes the trained generator parameters). Subsequently,
the synthesized features can be exploited to train the stan-
dard softmax classifier with negative log likelihood loss, as
follows:

min
θc
− 1

|X |

|X |∑
i=1

log
exp(θc(y)

>xi)∑
yj∈Y exp(θc(yj)

>xi)
, (10)

where X = X̃ u, Y = Yu for zero-shot learning and X =
X̃ u ∪ X s, Y = Yu ∪ Ys for generalized zero-shot learning,
while θc(yj) refers to the training parameters with respect to
class yj . Once the classifier has been trained, we can utilize
it for the prediction of new samples:

y∗ = argmax
y

exp(θ∗c (y)
>x)∑

yj∈Y exp(θ
∗
c (yj)

>x)
, (11)

where x represents the visual feature of a new sample that
has never been used during the training stage, while y∗ is
the predicted label for x.

4 EXPERIMENTS

Dataset Description. We evaluate the effectiveness of the
proposed method over four popular ZSL/GZSL datasets,
including Caltech-UCSD Birds-200-2011 (CUB) [34], Oxford
Flowers (FLO) [35], SUN attributes (SUN) [36] and Animals
with Attributes (AWA) [37]. For fair comparison, we follow
the zero-shot splits proposed by [4] to split each dataset into
training and testing subsets, without overlapping categories
between them. For class embedding, we adopt the per-class
attributes for CUB (312-dim), SUN (102-dim), AWA (85-
dim) and 1024-dim CNN-RNN features [38] for FLO. The
real CNN features for each dataset are extracted by 101-
layer ResNet [39] pre-trained on ImageNet 1K [40].
Implementation Details. We construct both the directed
acyclic graph search space Gg = (Vg, Eg) for the generator
and Gd = (Vd, Ed) for the discriminator using eight nodes:
three input nodes, four intermediate nodes and one output
node. Taking two types of general input information for the
generator into account, we set the input of Gg as follows:

1) the Gaussian noise z; 2) the semantic embedding cy ; 3)
the concatenation of z and cy , which is used to investigate
the stage at which information fusion should be conducted.
Similarly, the input of Gd is composed of the following: 1)
the real feature x or synthesized feature x̃; 2) the semantic
embedding cy ; 3) the concatenation of x and cy , or x̃ and
cy . For the output node, we set the output dimensions of
Gg and Gd to 2048 and 1 respectively for feature generation
and discrimination. Naturally, we can derive the dimensions
of intermediate nodes as [128, 256, 512, 1024] for Gg and
[1024, 512, 256, 128] for Gd respectively. For discriminator
searching, we randomly split the entire training data Dtr
into training set Dtr and validation set Dval with an equal
number of samples. For the generator, both the training
and validation data are sampled from the Gaussian noise
distribution pz . As suggested in [4], we set γ = 10, λ = 0.01,
nb = 64 and nd = 5 respectively.
Competitors and Evaluation Metrics. In addition to
f-CLSWGAN, we also compare the proposed ZeroNAS
with other eight state-of-the-art generative approaches for
ZSL/GZSL, including AFC-GAN [8], LisGAN [7], GAZSL
[19], ZSL-ABP [20], GZSL-OD [41], f-VAEGAN-D2 [42],
Meta-GZSL [43] and TF-VAEGAN [44]. We follow the
widely adopted evaluation protocol proposed in [45] to
evaluate the performance of each model.

4.1 Searched GAN Architectures
The discovered generator and discriminator pairs for each
dataset are presented in Figure 3. From these results, we can
make the following observations:

• Owing to the network pruning stage, ZeroNAS al-
lows the discovered discrete architectures to have
flexible hidden-layer numbers and dimensions for
different datasets. As depicted in Figure 3, the CUB
generator includes all four intermediate nodes, while
the FLO generator connects the input and output
directly without any intermediate nodes.

• It is also worth noting that all of the discovered ar-
chitectures involve the input node with concatenated
information, which indicates that the early fusion of
information at the input layer is more beneficial to
our task.

• Surprisingly, none of the discovered architectures
contain batch normalization or dropout operations.
This phenomenon suggests that simply stacking fully
connected layers equipped with non-linear activa-
tions will ensure that the requirements of our task
are satisfied.

• Except for the FLO generator without any intermedi-
ate nodes, all of the searched generators for CUB,
SUN and AWA have an output layer with ReLU
activation. It seems that this kind of structure is better
able to learn the top max-pooling units of ResNet-
101, as mentioned in f-CLSWGAN.

4.2 Architecture Evaluation
To evaluate the discovered architectures, we discard the
weights learned during the searching process and train their
parameters from scratch over the entire training set. Once
trained, we report the ZSL/GZSL performance on the test

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

a

0
fc_relu

1
fc_relu 2

fc_relu
3fc_relu

z

[a,z] fc_lrelu

fc_relu

fc_relu

fc_relu
ofc_relu

fc_relu

(a)

a
0

fc_relu

f

1

fc_lrelu 2

fc_lrelu 3
fc_lrelu

[a,f]

fc_lrelu

fc_lrelu

fc_lrelu

fc_lrelu

o
fc_relu

fc_relu

(b)

a
0

fc_lrelu

z
1

fc_lrelu

2
fc_lrelu

3
fc_lrelu

o
fc_lrelu

[a,z]

fc_lrelu

fc_lrelu

fc_lrelu

fc_lrelu

fc_lrelu

(c)

a
0

fc_lrelu

f 1fc_lrelu

2fc_relu

ofc_lrelu[a,f]
fc_lrelu

fc_lrelu
fc_relu

fc_relu 3
fc_relu

fc_lrelu

(d)

a

z

0

fc_lrelu

1

fc_lrelu
2

fc_lrelu
3

fc_lrelu

[a,z]

fc_lrelu

fc_lrelu

fc_lrelu

fc_lrelu ofc_relu

fc_relu

(e)

a 0
fc_lrelu

f
1

fc_relu

[a,f]

fc_lrelu

fc_lrelu
2fc_relu

3fc_relu

fc_lrelu

fc_lrelu
ofc_lrelu

fc_lrelu

(f)

a

0
fc_lrelu 1

fc_lrelu
2fc_lrelu 3

fc_lrelu
z

[a,z] fc_relu

fc_relu

fc_relu
ofc_relu

fc_relu
fc_relu

(g)

a 0fc_lrelu

f

[a,f]

fc_relu
1

fc_relu

fc_relu

2fc_lrelu

3fc_relu

fc_relu

fc_relu

ofc_relu

fc_relu

(h)

Fig. 3. The generator and discriminator architecture pairs learned for (a) (b) CUB, (c) (d) FLO, (e) (f) AWA, and (g) (h) SUN; here, “a”, “z” and “f”
represent the attribute, noise and feature vector respectively, while “‘o” denotes the output node.

TABLE 1
ZSL performance (top-1 accuracy %) over benchmark datasets, where

“FIX” and “NAS” refer to the model equipped with hand-crafted and
searched GAN architectures respectively.

Methods Arch CUB FLO SUN AWA

f-CLSWGAN FIX 57.3 66.0 58.9 67.8

NAS 60.2+2.9 69.0+3.0 61.4+2.5 71.3+3.5

LisGAN FIX 57.9 68.5 60.8 70.1

NAS 62.6+4.7 71.3+2.8 64.1+3.3 72.8+2.7

GAZSL FIX 55.7 60.6 60.7 65.2

NAS 58.0+2.3 64.7+4.1 63.4+2.7 69.1+3.9

GZSL-OD FIX 58.7 63.7 59.1 59.4

NAS 61.8+3.1 67.2+3.5 61.3+2.2 65.6+6.2

ZSL-ABP FIX 55.8 57.9 59.2 70.5

NAS 59.5+3.7 63.2+5.3 62.4+3.2 73.6+3.1

AFC-GAN FIX 62.0 66.8 61.8 70.4

NAS 64.5+2.5 70.1+3.3 63.7+1.9 72.7+2.3

f-VAEGAN-D2 FIX 61.3 67.7 64.5 70.6

NAS 63.8+2.5 70.5+2.8 66.4+1.9 72.6+2.0

Meta-GZSL FIX 68.8 - 60.1 73.6

NAS 71.0+2.2 - 64.5+4.4 75.4+1.8

TF-VAEGAN FIX 64.9 69.3 65.4 71.3

NAS 66.4+1.5 71.1+1.8 68.3+2.9 73.2+1.9

set that has never been used for architecture searching and
training.

4.2.1 Quantitative Analysis.
The results of conventional ZSL are reported in Table
1. Compared to f-CLSWGAN with hand-crafted architec-
ture, our method achieves up to 2.9%, 3.0%, 2.5%, and
3.5% improvements on CUB, FLO, SUN and AWA respec-
tively. Apart from f-CLSWGAN, several improved GAN ap-

proaches (e.g., AFC-GAN and LisGAN), have been proposed
to further enhance the ZSL performance by developing
a more complex model framework or leveraging external
knowledge. For example, LisGAN improves the ZSL accu-
racy of f-CLSWGAN by 0.6%, 2.5%, 1.9%, and 2.3% over
CUB, FLO, SUN and AWA respectively. Notably, when f-
CLSWGAN is equipped with the GAN architectures dis-
covered by ZeroNAS, it successfully achieves comparable
or better performance compared with these state-of-the-
art methods, e.g., LisGAN and AFC-GAN, even without
introducing any external knowledge or requiring additional
auxiliaries. We can attribute this improvement to the auto-
matic architecture search of the generator and discriminator
pair, which can better capture the real data distribution.
To explore the versatility of ZeroNAS, we further integrate
it with other GAN based feature generation competitors.
Instead of directly using the GAN architectures searched
for f-CLSWGAN, we re-perform an architecture search for
each method using the specific model framework and loss
formulation. It is noteworthy from Table 1 that all of these
methods have achieved varying degrees of performance
improvement after adopting the re-searched architectures,
leading to more advanced and competitive results. This
phenomenon suggests that ZeroNAS could provide a gen-
eralized and promising way to enhance the performance of
existing GAN-based ZSL methods.

We further report the experimental results of generalized
zero-shot learning (GZSL) in Table 2. While ZSL predicts the
possible categories of unseen samples from Yu only, GZSL
recognizes both seen and unseen samples by searching the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

TABLE 2
GZSL performance (top-1 accuracy %) over benchmark datasets achieved by different methods. The results of seen, unseen classes and their

harmonic mean are denoted as As, Au and Ah respectively.

Methods Arch CUB FLO SUN AWA
As Au Ah As Au Ah As Au Ah As Au Ah

f-CLSWGAN FIX 46.0 54.7 50.0 57.9 74.9 65.3 43.8 35.6 39.3 56.1 65.7 60.5

NAS 48.8 57.8 52.9+2.9 61.9 77.1 68.7+3.4 45.8 36.4 40.6+1.3 60.8 63.4 62.1+1.6

LisGAN FIX 44.9 59.3 51.1 55.8 80.5 65.9 44.6 35.5 39.6 52.6 76.3 62.3

NAS 49.5 60.2 54.3+3.2 61.1 83.7 70.6+4.7 45.5 38.3 41.6+2.0 65.2 67.0 66.1+3.8

GAZSL FIX 63.2 22.7 33.4 81.9 30.1 44.0 38.4 21.2 27.3 80.0 22.5 35.1

NAS 62.3 31.5 41.8+8.4 78.6 37.1 50.4+6.4 40.4 27.5 32.7+5.4 78.3 29.6 43.0+7.9

GZSL-OD FIX 46.2 35.8 40.3 57.8 55.2 56.4 32.5 26.6 29.3 47.9 69.1 56.6

NAS 47.7 40.1 43.6+3.3 60.5 62.3 61.4+5.0 34.4 32.1 33.2+3.9 52.1 74.7 61.4+4.8

ZSL-ABP FIX 45.6 54.1 49.5 50.5 77.0 61.0 41.5 36.7 38.9 69.1 55.7 61.7

NAS 46.3 57.2 51.2+1.7 53.8 80.3 64.4+3.4 45.6 38.2 41.6+2.7 71.6 57.4 63.7+2.0

AFC-GAN FIX 58.0 54.0 55.9 74.8 49.7 59.7 39.4 44.2 41.7 69.5 59.8 64.3

NAS 59.5 57.3 58.4+2.5 77.6 53.5 63.3+3.6 39.9 48.6 43.8+2.1 73.4 61.1 66.7+2.4

f-VAEGAN-D2 FIX 60.3 48.0 53.5 75.5 57.2 65.1 37.6 45.3 41.1 71.3 57.2 63.5

NAS 63.7 49.4 55.6+2.1 78.1 60.8 68.4+3.3 40.7 47.2 43.7+2.6 71.8 60.5 65.7+2.2

Meta-GZSL FIX 51.6 61.9 56.3 - - - - - - 73.8 58.4 65.2

NAS 53.1 64.5 58.2+1.9 - - - - - - 76.5 61.3 68.1+2.9

TF-VAEGAN FIX 64.5 52.8 58.1 83.2 62.1 71.1 40.3 45.5 42.7 74.5 59.1 65.9

NAS 63.8 56.0 59.6+1.5 84.6 65.5 73.8+2.7 41.8 47.1 44.3+1.6 75.3 61.4 67.6+1.7

possible categories from Ys ∪ Yu. We test the performance
of all comparison methods on both seen and unseen classes.
Taking their harmonic mean as the overall performance,
we can draw similar conclusions from Table 2 for GZSL as
for conventional ZSL. In addition, it is worth noting that
our method is able to boost the performance on unseen
categories while simultaneously maintaining the accuracy
on seen categories. Taking GAZSL as an example, the perfor-
mance gain on unseen categories is much more significant
than that on seen categories: i.e., +8.8% vs −0.9%, +7.0%
vs −3.3%, +6.3% vs +2.0%, +7.1% vs −1.7% over CUB,
FLO, SUN and AWA respectively. Thus, benefiting from the
architectures discovered by ZeroNAS, the unbalance of As
and Au in GAZSL is dramatically alleviated; this is more
likely to result in higher performance for Ah.

4.2.2 Qualitative Analysis.
To verify whether the learned architectures are indeed able
to capture the data distribution of unseen classes, we uti-
lize t-SNE [46] to visualize the synthesized features along
with some real features of the AWA dataset in Figure 4.
Specifically, we generate 100 samples for each unseen class,
meaning that 100 real features are also randomly sampled
for each unseen class. All these features are preprocessed
with t-SNE from 2048-dim to 2-dim for visualization pur-
poses. Compared to f-CLSWGAN, as expected, the unseen
features synthesized by the proposed ZeroNAS demonstrate
larger overlap with the real ones for most of categories,
e.g., bat, rat and blue whale, as depicted in Figure 4. This
suggests that ZeroNAS can produce effective architectures
to better capture the unseen data distribution, which further
substantiates our improvements in Table 1 and 2.

4.3 Ablation Studies
4.3.1 Effect of generator and discriminator search.
Table 3 examines the specific effect of each searching com-
ponent, i.e., G and D. We derive two variants of ZeroNAS,
i.e., “Fixed D” and “Fixed G”, by fixing one of them to the
original structure in f-CLSWGAN at a time. From Table 3,

TABLE 3
ZSL/GZSL performance (top-1 accuracy %) with one of G and D fixed.

Dataset Arch
ZSL GZSL
A As Au Ah

CUB Fixed D 59.2 45.9 57.8 51.1

Fixed G 57.4 44.0 57.2 49.7

FLO Fixed D 67.1 61.5 77.0 68.4

Fixed G 64.7 56.9 77.9 65.8

SUN Fixed D 60.8 47.1 34.8 40.0

Fixed G 60.2 43.3 36.9 39.8

AWA Fixed D 69.1 56.6 65.7 60.8

Fixed G 68.6 57.8 64.1 60.8

we can observe that the two variants achieve better results
than the baseline f-CLSWGAN in most cases in terms of
both ZSL and GZSL settings, which verifies the effectiveness
of each component for our task. Moreover, by comparing
the results in the two different settings, we can observe
that the improvements achieved with “Fixed D” are more
remarkable than those achieved with “Fixed G”. This could
be because the generator plays a more important role in
capturing the true data distribution, and thus enables the
model to learn higher-quality features. When compared
with fixing one of G and D, our ZeroNAS takes advantage
of both searched G and D to achieve the best ZSL/GZSL
performance over all the datasets. This demonstrates that
the searched generator and discriminator are complemen-
tary to each other in facilitating the ZSL/GZSL performance.

4.3.2 Transferability.
To evaluate the transferability of the discovered architec-
tures, we directly apply the GAN architecture searched over
one dataset to the other datasets. The quantitative results
are presented in Figure 5. We can easily observe that the
transfered architectures suffer from significant performance
degradation compared to their own architecture searched
by ZeroNAS; in fact, some of the results are even worse
than the baseline performance achieved by f-CLSWGAN.
Taking FLO as an example, the architectures transfered
from the other three datasets decrease the performance of

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

sheep
dolphin

bat
seal

blue+whale
rat

horse
walrus

giraffe
bobcat

(a) f-CLSWGAN

sheep
dolphin

bat
seal

blue+whale
rat

horse
walrus

giraffe
bobcat

(b) ZeroNAS

Fig. 4. Visualization with t-SNE of the features synthesized by different methods on AWA, where ◦ and × denote real and fake samples respectively.

CUB→ FLO→ SUN→ AWA→
→CUB 60.15 56.28 58.45 59.25 57.3
→FLO 60.01 68.94 64.56 64.9 66.04
→SUN 59.79 58.75 61.39 60.56 58.95
→AWA 62.76 67.93 67.6 71.3 67.8

40

45

50

55

60

65

70

75

→CUB →FLO →SUN →AWA

A
cc
u
ra
cy
(%
)

CUB→ FLO→ SUN→ AWA→

Fig. 5. Examination of architecture transferability in terms of ZSL accu-
racy, where the red line indicates the baseline performance achieved by
f-CLSWGAN.

f-CLSWGAN from 66.04% to 60.01%, 64.56% and 64.90%
respectively. This phenomenon indicates that the learned
GAN architectures by ZeroNAS are data-dependent, and
thus, that directly transferring the architectures searched for
a specific dataset to other datasets is far from optimal.

4.3.3 Accuracy during searching and training.

Given that GAN is hard to train, we report the accuracy
during both the searching and training processes over each
dataset in Figure 6. When examining these results, it is
worth noting that ZeroNAS always achieves better per-
formance than f-CLSWGAN, while enjoying comparable
convergence speed. The architecture search stage, which is
a step that typically takes up a significant amount of time in
previous NAS, only takes slightly more time to converge
when compared with model training in our method. To
be more specific, owing to the compact search space and
differentiable search strategy, the proposed ZeroNAS only
takes about 1.5 and 2 GPU hours to find the optimal GAN
architecture for the FLO and CUB datasets respectively, and
can thus be deemed very efficient. Moreover, we also ob-
serve that the searching stage always gains lower accuracy
than the training stage. We believe this is because of the
dynamically changing model architecture and incomplete
training data for parameter optimization during the search-
ing process.

5 CONCLUSION

In this paper, we have presented ZeroNAS with the goal
of making the first attempt to search the optimal GAN ar-
chitecture tailored for zero-shot learning. Through analysis
of the formulations of existing GANs for ZSL, we develop
a model design that focuses on the following key points:
1) the relevance and balance between the generator and
discriminator during searching; 2) expressive MLP search
space for feature synthesis; 3) continuous relaxation of the
search space for efficient differentiable search. Experiments
on four benchmark datasets demonstrate that the proposed
ZeroNAS is capable of discovering state-of-the-art GAN
architectures that enhance the performance of existing GAN
frameworks for ZSL/GZSL. Future work will concentrate
on adapting the proposed architecture search method to
other various kinds of architectures, such as cyclic consis-
tency or reconstruction regularizer based GAN models and
fully MLP-based models.

ACKNOWLEDGMENTS

This work was supported by National Key Research and De-
velopment Program of China (No. 2018AAA0101400), Na-
tional Nature Science Foundation of China (No. 62137002,
No. 61872287, No. 62050194 and No. 61906109), Innovative
Research Group of the National Natural Science Founda-
tion of China (No. 61721002), Innovation Research Team
of Ministry of Education (IRT 17R86), Project of China
Knowledge Center for Engineering Science and Technology
and The Consulting Research Project of Chinese Academy
of Engineering “The Online and Offline Mixed Educational
Service System for The Belt and Road” Training in MOOC
China, and the Australian Research Council (ARC) under
a Discovery Early Career Researcher Award (DECRA) No.
DE190100626.

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” in NIPS, 2014.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

0 50 100 150 200
Epoch

0.0

0.2

0.4

0.6
Ac

cu
ra

cy

Training of f-CLSWGAN
Training of ZeroNAS
Searching of ZeroNAS

(a) CUB

0 50 100 150 200
Epoch

0.2

0.4

0.6

Ac
cu

ra
cy

Training of f-CLSWGAN
Training of ZeroNAS
Searching of ZeroNAS

(b) FLO

0 50 100 150
Epoch

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

Training of f-CLSWGAN
Training of ZeroNAS
Searching of ZeroNAS

(c) SUN

0 50 100 150 200
Epoch

0.2

0.4

0.6

Ac
cu

ra
cy

Training of f-CLSWGAN
Training of ZeroNAS
Searching of ZeroNAS

(d) AWA

Fig. 6. Top-1 accuracy on ZSL over benchmark datasets during the training of f-CLSWGAN, the searching of ZeroNAS and the training of ZeroNAS.

[2] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative
adversarial networks,” in ICML, 2017.

[3] E. L. Denton, S. Chintala, R. Fergus et al., “Deep generative image
models using a laplacian pyramid of adversarial networks,” in
NIPS, 2015.

[4] Y. Xian, T. Lorenz, B. Schiele, and Z. Akata, “Feature generating
networks for zero-shot learning,” in CVPR, 2018.

[5] H. Zhang, Y. Long, L. Liu, and L. Shao, “Adversarial unseen visual
feature synthesis for zero-shot learning,” Neurocomputing, vol. 329,
pp. 12–20, 2019.

[6] H. Huang, C. Wang, P. S. Yu, and C.-D. Wang, “Generative dual
adversarial network for generalized zero-shot learning,” in CVPR,
2019.

[7] J. Li, M. Jing, K. Lu, Z. Ding, L. Zhu, and Z. Huang, “Leveraging
the invariant side of generative zero-shot learning,” in CVPR, 2019.

[8] J. Li, M. Jing, K. Lu, L. Zhu, Y. Yang, and Z. Huang, “Alleviating
feature confusion for generative zero-shot learning,” in ACM MM,
2019.

[9] M. Zhang, H. Li, S. Pan, X. Chang, C. Zhou, Z. Ge, and S. W.
Su, “One-shot neural architecture search: Maximising diversity to
overcome catastrophic forgetting,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 43, no. 9, pp. 2921–2935, 2021.

[10] C. Li, G. Wang, B. Wang, X. Liang, Z. Li, and X. Chang, “Ds-
net++: Dynamic weight slicing for efficient inference in cnns and
transformers,” CoRR, vol. abs/2109.10060, 2021.

[11] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architec-
ture search,” in ICLR, 2019.

[12] Y. Chen, T. Yang, X. Zhang, G. Meng, C. Pan, and J. Sun, “Detnas:
Neural architecture search on object detection,” in NIPS, 2019.

[13] X. Gong, S. Chang, Y. Jiang, and Z. Wang, “Autogan: Neural
architecture search for generative adversarial networks,” in ICCV,
2019.

[14] H. Wang and J. Huan, “Agan: Towards automated design of
generative adversarial networks,” arXiv preprint arXiv:1906.11080,
2019.

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in CVPR, 2015.

[16] S. Doveh and R. Giryes, “Degas: Differentiable efficient generator
search,” arXiv preprint arXiv:1912.00606, 2019.

[17] X. Wei, B. Gong, Z. Liu, W. Lu, and L. Wang, “Improving the
improved training of wasserstein gans: A consistency term and its
dual effect,” in ICLR, 2018.

[18] R. Felix, V. B. Kumar, I. Reid, and G. Carneiro, “Multi-modal cycle-
consistent generalized zero-shot learning,” in ECCV, 2018.

[19] Y. Zhu, M. Elhoseiny, B. Liu, X. Peng, and A. Elgammal, “A
generative adversarial approach for zero-shot learning from noisy
texts,” in CVPR, 2018.

[20] Y. Zhu, J. Xie, B. Liu, and A. Elgammal, “Learning feature-to-
feature translator by alternating back-propagation for generative
zero-shot learning,” in ICCV, 2019.

[21] B. Zoph and Q. V. Le, “Neural architecture search with reinforce-
ment learning,” in ICLR, 2017.

[22] P. Ren, Y. Xiao, X. Chang, P. Huang, Z. Li, X. Chen, and X. Wang,
“A comprehensive survey of neural architecture search: Chal-
lenges and solutions,” ACM Comput. Surv., vol. 54, no. 4, pp. 76:1–
76:34, 2021.

[23] X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drum-
mond, and Z. Ge, “Hierarchical neural architecture search for deep
stereo matching,” in NeurIPS, 2020.

[24] M. Zhang, H. Li, S. Pan, X. Chang, Z. Ge, and S. Su, “Differentiable
neural architecture search in equivalent space with exploration
enhancement,” in NeurIPS, 2020.

[25] M. Zhang, H. Li, S. Pan, X. Chang, and S. Su, “Overcoming multi-
model forgetting in one-shot nas with diversity maximization,” in
CVPR, 2002.

[26] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and
L. Fei-Fei, “Auto-deeplab: Hierarchical neural architecture search
for semantic image segmentation,” in CVPR, 2019.

[27] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural
network architectures using reinforcement learning,” in ICLR,
2017.

[28] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transfer-
able architectures for scalable image recognition,” in CVPR, 2018.

[29] L. Xie and A. Yuille, “Genetic cnn,” in ICCV, 2017.
[30] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized

evolution for image classifier architecture search,” in AAAI, 2019.
[31] H. Jin, Q. Song, and X. Hu, “Auto-keras: Efficient neural

architecture search with network morphism,” arXiv preprint
arXiv:1806.10282, 2018.

[32] Q. Yao, J. Xu, W.-W. Tu, and Z. Zhu, “Differentiable neural archi-
tecture search via proximal iterations,” in AAAI, 2020.

[33] A. Hundt, V. Jain, and G. D. Hager, “Sharpdarts: Faster and
more accurate differentiable architecture search,” arXiv preprint
arXiv:1903.09900, 2019.

[34] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
caltech-ucsd birds-200-2011 dataset,” 2011.

[35] M.-E. Nilsback and A. Zisserman, “Automated flower classifica-
tion over a large number of classes,” in ICCVGI, 2008.

[36] G. Patterson and J. Hays, “Sun attribute database: Discovering,
annotating, and recognizing scene attributes,” in CVPR, 2012.

[37] C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based
classification for zero-shot visual object categorization,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 36, no. 3, pp. 453–465, 2013.

[38] S. Reed, Z. Akata, H. Lee, and B. Schiele, “Learning deep repre-
sentations of fine-grained visual descriptions,” in CVPR, 2016.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016.

[40] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Ima-
genet: A large-scale hierarchical image database,” in CVPR, 2009.

[41] D. Mandal, S. Narayan, S. K. Dwivedi, V. Gupta, S. Ahmed, F. S.
Khan, and L. Shao, “Out-of-distribution detection for generalized
zero-shot action recognition,” in CVPR, 2019.

[42] Y. Xian, S. Sharma, B. Schiele, and Z. Akata, “f-vaegan-d2: A
feature generating framework for any-shot learning,” in CVPR,
2019.

[43] V. K. Verma, D. Brahma, and P. Rai, “Meta-learning for generalized
zero-shot learning,” in AAAI, 2020.

[44] S. Narayan, A. Gupta, F. S. Khan, C. G. Snoek, and L. Shao,
“Latent embedding feedback and discriminative features for zero-
shot classification,” in ECCV, 2020.

[45] Y. Xian, B. Schiele, and Z. Akata, “Zero-shot learning-the good, the
bad and the ugly,” in CVPR, 2017.

[46] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605,
2008.

	Introduction
	Related Works
	Generative Adversarial Networks for ZSL
	Neural Architecture Search

	The Proposed Methodology
	Preliminaries
	Search Space for GANs
	Search Algorithm for GANs
	Pruning, Training and Inference

	Experiments
	Searched GAN Architectures
	Architecture Evaluation
	Quantitative Analysis.
	Qualitative Analysis.

	Ablation Studies
	Effect of generator and discriminator search.
	Transferability.
	Accuracy during searching and training.

	Conclusion
	References

