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Scene Graphs: A Survey of Generations and
Applications

Xiaojun Chang, Pengzhen Ren, Pengfei Xu, Zhihui Li, Xiaojiang Chen, and Alex Hauptmann

Abstract—Scene graph is a structured representation of a scene that can clearly express the objects, attributes, and relationships
between objects in the scene. As computer vision technology continues to develop, people are no longer satisfied with simply detecting
and recognizing objects in images; instead, people look forward to a higher level of understanding and reasoning about visual scenes.
For example, given an image, we want to not only detect and recognize objects in the image, but also know the relationship between
objects (visual relationship detection), and generate a text description (image captioning) based on the image content. Alternatively, we
might want the machine to tell us what the little girl in the image is doing (Visual Question Answering (VQA)), or even remove the dog from
the image and find similar images (image editing and retrieval), etc. These tasks require a higher level of understanding and reasoning
for image vision tasks. The scene graph is just such a powerful tool for scene understanding. Therefore, scene graphs have attracted
the attention of a large number of researchers, and related research is often cross-modal, complex, and rapidly developing. However,
no relatively systematic survey of scene graphs exists at present. To this end, this survey conducts a comprehensive investigation of
the current scene graph research. More specifically, we first summarized the general definition of the scene graph, then conducted
a comprehensive and systematic discussion on the generation method of the scene graph (SGG) and the SGG with the aid of prior
knowledge. We then investigated the main applications of scene graphs and summarized the most commonly used datasets. Finally, we
provide some insights into the future development of scene graphs. We believe this will be a very helpful foundation for future research
on scene graphs.

Index Terms—Scene Graph, Visual Feature Extraction, Prior Information, Visual Relationship Recognition
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1 INTRODUCTION

A T present, deep learning [1], [2], [3], [4], [5], [6], [7] has
substantially promoted the development of computer

vision, such that people are no longer satisfied with simple
visual understanding tasks such as target detection and
recognition. Higher-level visual understanding and reason-
ing tasks are often required to capture the relationship
between objects in the scene as a driving force. For this
reason, the scene graph was first developed. Scene graphs
were first proposed [8] as a data structure that describes the
object instances in a scene and the relationships between
these objects. A complete scene graph is able to represent
the detailed semantics of a dataset of scenes, but not a single
image or a video; moreover, it has powerful representations
that encode 2D/3D images [8], [9] and videos [10], [11]
into their abstract semantic elements without restricting
either the types and attributes of objects or the relationships
between objects. Related research into scene graphs greatly
promotes the understanding of tasks such as vision, natural
language, and their cross-domains.

As early as 2015, the idea of utilizing the visual features
of different objects contained in the image and the relation-
ships between them was proposed as a means of achieving
the visual tasks of action recognition [12], image captioning

• X. Chang is with Department of Data Science and AI, Faculty of
Information Technology, Monash University.

• P. Ren, P. Xu, and X. Chen are with School of Information Science and
Technology, Northwest University.

• Z. Li is with Shandong Artificial Intelligence Institute, Qilu University
of Technology.

• A. Hauptmann is with School of Computer Science, Carnegie Mellon
University.

Manuscript received March 8, 2021.

[13] and other relevant computer vision tasks [14]. This type
of visual relationship mining has been found to significantly
improve the performance of related visual tasks, as well
as to effectively enhance people’s ability to understand
and reason about visual scenes. Subsequently, this visual
relationship was incorporated into scene graph theory in
a paper by Johnson et al. [8], in which the definition of
scene graphs was formally provided. In [8], a scene graph
is generated manually from a dataset of real-world scene
graphs, enabling the detailed semantics of a scene to be cap-
tured. Since then, the research on scene graphs has received
extensive attention [15], [16], [17], [18]. When the scene
graph concept was first proposed in 2015, it was initially
applied to image retrieval; since then, the amount and scope
of research into scene graphs has increased significantly.

In these research results, we primarily review scene
graph generation (SGG) methods and the applications of
the scene graph. More specifically, multiple scene graph
datasets [19], [20], [21], [22], have been published since the
method’s inception, many scene graph generation methods
based on these datasets have subsequently been proposed.
These methods can be simply divided into SGG methods
and SGG methods with prior knowledge. At present, the
SGG methods mainly include CRF-based (conditional ran-
dom field) SGG [8], [23], [24], TransE-based (visual trans-
lation embedding) SGG [25], [26], [27], CNN-based SGG
[28], [29], [30], RNN/LSTM-based SGG [31], [32], [33], and
graph-based SGG [34], [35], [36], among others. In addition,
different types of prior information have been introduced
for SGG, such as language priors [19], [37], [38], statistical
priors [23], [39], knowledge graphs [23], [39], and so on. Fig.
1(a) presents the relevant works on SGG; as can be seen
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(a) SGG methods (b) SGG apllications

Fig. 1. SGG overall statistics. (a) The classification and statistics of SGG
methods. (b) The classification and statistics of SGG applications.

from the figure, most research focuses on SGG that utilizes
GCN (Graph Convolutional Network) [40]. Scene graph can
provide powerful representations for the semantic features
of a scene, and has thus been widely applied to related
visual tasks, such as visual-textual transformers [15], [41],
[42], [43], [44], [45], image-text retrieval [8], [46], visual ques-
tion answering (VQA) [47], [48], [49], image understanding
and reasoning [50], [51], 3D scene understanding [9], [17],
[52], human-object interaction (HOI) and human-human
interaction (HHI) [53], [54], among others (see Fig. 1(b)). We
can accordingly determine that scene graphs have become
a hot research topic in the field of vision, and will likely to
continue to receive attention in the future.

1.1 Definition

Fig.2 presentes the overall process of building a scene graph.
As shown in Fig.2 (bottom), the object instance in the scene
graph can be a person (girl), a place (tennis court), a thing
(shirt), or parts of other objects (arms). Attributes are used to
describe the state of the current object, which may include
its shape (a racket is a long strip), color (girl’s clothes are
white), and pose (a girl who is standing). Relations are
used to describe the connection between pairs of objects,
such as actions (e.g. girl swinging racket), and positions
(cone placed in front of a girl). Formally, the scene graph
G is a directed graph data structure; this can be defined
as a tuple G = (O,E), where O = o1, ..., oN is the set
of objects detected in the images. Each object has the form
oi = (ci, Ai), where ci and Ai represent the category and at-
tributes of the object respectively. Moreover, E ⊆ O×R×O
is a set of directed edges that repress the relationships
between objects. This relationship is usually expressed as a
〈subject − predicate − object〉 triplet. At present, a scene
graph is typically associated with an image dataset, but
not with only one image; thus, it can be considered as
representing a visual understanding of relevant images.

1.2 Construction Process

As shown in Fig. 2 (left), from the perspective of the scene
graph generation process, the generations of scene graphs
can be currently divided into two types [35]. The first
approach has two stages, namely object detection and pair-
wise relationship recognition [19], [23], [39], [55]. The first
stage involved in identifying the categories and attributes

of the detected objects is typically achieved using Faster-
RCNN [56]. This method is referred to as the bottom-up
method. The other approach involves jointly detecting and
recognizing the objects and their relationships [30], [34], [57].
This method is referred to as the top-down method. At the
high level, the inference tasks and other visual tasks includ-
ing recognizing objects, predicting the objects’ coordinates,
and detecting/recognizing pairwise relationship predicates
between objects [58]. Therefore, most current work focuses
on the key challenge of reasoning the visual relationship.

1.3 Challenge
Notably, however, the research into scene graphs still faces
a number of challenges. At present, scene graph research
focuses primarily on trying to solve the following two
problems:

• Accuracy of SGG. The key question here is that of
how to generate a more accurate and complete scene
graph. Different learning models have a crucial im-
pact on the accuracy and completeness of the scene
graph generated by mining visual text information.
Accordingly, the study of related learning models is
very necessary for SGG.

• The introduction of prior knowledge. In addition to
fully mining the objects in the current training set,
along with their relationships, some additional prior
knowledge is also crucial to the scene graph con-
struction. Another important issue is that of how to
make full use of this existing prior knowledge.

In response to the first question, a large number of
methods for generating more accurate and complete scene
graphs have been proposed, which are systematically dis-
cussed in Section 2; moreover, the introduction of additional
prior knowledge is detailed in Section 3. Next, in Section
4, we compile a detailed summary of various applications
of scene graphs. In Section 5, we summarized the relevant
information about the datasets commonly used in SGG. In
Section 6, we look forward to assess the future direction of
SGG. Finally, we present our concluding remarks in Section
7.

2 SCENE GRAPH GENERATION

A scene graph is a topological representation of a scene,
the primary goal of which is to encode object and their
relationships. The task of scene graph generation (SGG)
involves constructing a graph structure that is best able to
associate its nodes and edges with the objects and their
relationships in a scene. Moreover, the key challenge task
is to detect/recognize the relationships between the objects.
The concept of the scene graph, which was first proposed
by Johnson in [8], manually established the corresponding
scene graph on the RW-SGD (Real-World Scene Graphs
Dataset). However, it generating a scene graph manually
is highly costly, while subjective factors exert an influence
on the understanding of a scene. Therefore, automatically
building an accurate and complete scene graph is greatly
helpful to the understanding of related visual tasks.

Scene graph generation methods can be roughly divided
into CRF-based SGG, TransE-based SGG, CNN-based SGG,
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Fig. 2. An example of scene graph construction. Middle right: The ground-truth scene graph of a given image. Bottom: An example of a complete
scene graph.

RNN/LSTM-based SGG, and Graph-based SGG. In this sec-
tion, we conduct a detailed review of each of these methods.

2.1 CRF-based SGG

In the visual relationship triples 〈s − r − o〉, a strong sta-
tistical correlation exists between the relationship predicate
and the object pair. Effective use of this information can
greatly aid in the recognition of visual relationships. The
CRF (Conditional Random Field) [59] is such a classical
tool capable of incorporating statistical relationships into the
discrimination task. CRF has been widely used in various
graph inference tasks, including image segmentation [60],
[61], [62], named-entity recognition [63], [64] and image
retrieval [8]. In the context of visual relations, the CRF can
be expressed as follows:

p(r, s, o|xr, xs, xo) =
1

Z
exp(Φ(r, s, o|xr, xs, xo;W )), (1)

where xr refers to the appearance feature and spatial config-
uration of the object pair, xs and xo denote the appearance
features of the subject and object respectively, W is the
parameter of the model, Z is a normalization constant, and
Φ represents the joint potential. Similar CRFs are widely
utilized in computer vision tasks [62], [65] and have been
proven effective in capturing statistical correlations in visual
relationships. CRF-based scene graph generation is thus also
a very valuable research direction.

Inspired by the success of deep neural networks [66],
[67] and CRF [59] models, in order to explore statistical
relationships in the context of visual relationships, DR-
Net (Deep Relational Network) [23] opts to incorporate
statistical relationship modeling into the deep neural net-
work framework. DR-Net unrolls the inference of relational
modeling into a feedforward network. In addition, DR-Net
is obviously different from previous CRFs. More specifically,
the statistical inference procedure in DR-Net is embedded in
a deep relational network through iteration unrolling. The
performance of the improved DR-Net is not only superior
to classification-based methods, but also better than deep

potential-based CRFs. Furthermore, SG-CRF (Scene Graph
Generation via Conditional Random Fields) [24] works have
observed that some previous methods [19], [20], [57], [68]
tend to ignore the semantic compatibility (that is, the like-
lihood distribution of all 1-hop neighbor nodes of a given
node) between instances and relationships, which results
in a significant decrease in the model performance when
faced with real-world data. For example, this may cause the
model to incorrectly recognize 〈dog − sitting inside− car〉
as 〈dog − driving − car〉. Moreover, these models ignore
the order of the two, leading to confusion between subject
and object, which may produce absurd predictions such as
〈car−sitting inside−dog〉. In order to solve these problems,
an end-to-end scene graph constructed via conditional ran-
dom fields was proposed by SG-CRF to improve the quality
of scene graph generation. More specifically, in order to
learn the semantic compatibility of nodes in the scene graph,
SG-CRF proposes a new semantic compatibility network
based on conditional random fields. In order to distin-
guish between the subject and object in the relationship,
SG-CRF proposes an effective relation sequence layer that
can capture the subject and object sequence in the visual
relationship.

In general, the CRF-based scene graph generation can
effectively model the statistical correlation in the visual
relationship, which aids in more accurately identifying the
visual relationship. Although not many related works have
been published on this subject, this statistically relevant
information modeling is remains a classic tool in visual
relationship recognition tasks.

2.2 TransE-based SGG

Since a relationship is a combination of objects and predi-
cates, the complexity of this relationship is O(N2R) for N
objects and R predicates. Even if learning the models for
the object and predicate separately reduces the complexity
to O(N + R), the dramatic changes in the appearance
of the predicate remain very challenging (for example,
there is a significant difference in the visual appearance of
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Fig. 3. Examples of the sparsity and variability of visual relationships.
The left side presents examples of annotated visual relationships avail-
able in the training set, while the right side shows examples of visual
relationships that are rare in the real world or test set but do actually
exist.

〈person− ride− bike〉 and 〈person− ride− horse〉. Fig. 3
presents an example of this case). The distribution of such
object-predicate combinations tends to be more long-tailed
than that of objects alone. In addition, the knowledge graph
is similar to the scene graph; it also has a large number of
fact triples, and these multi-relational data are denoted in
the form 〈head entity type − relation − tail entity type〉.
Knowledge graphs represent learning to embed triples into
low-dimensional vector spaces, with TransE (Translation
Embedding)-based models having been proven particularly
effective. Furthermore, TransE (Translation Embedding) [69]
regards the relationship as a translation between the head
entity and the tail entity. This is in fact still helpful for
learning the visual relationship representation in the scene
graph.

Inspired by the advances made by TransE in the rela-
tional representation learning of knowledge bases [69], [70],
VTransE [25] (based on TransE) explored how visual rela-
tions could be modeled by mapping the features of objects
and predicates in low-dimensional space. More specifically,
VTransE [25] is the first TransE-based SGG method that
works by extending TransE networks [69]. VTransE maps
entities and predicates into a low-dimensional embedding
vector space, in which the predicate is interpreted as the
translation vector between the embedded features of the
subject and object’s bounding box regions. The relation-
ship is modeled as a simple vector transformation, i.e.,
subject + predicate ≈ object. While this is a good start,
VTransE considers only the features of the subject and the
object, and not those of the predicate and context informa-
tion [71], [72], despite these having been proven to be useful
for the recognition of relations [73], [74]. To this end, MA-
TransE (Multimodal Attentional Translation Embeddings)
[27], an approach based on VTransE, combines the com-
plementary nature of language and vision [19], along with
an attention mechanism [75] and deep supervision [76],
to propose a multimodal attention translation embedding
method. MATransE designed two separate branches to deal
directly with those of the predicate and the features of the
subject-object, achieving good results.

In addition to the drastically changing visual appearance
of the predicate, both the sparsity of the predicate repre-
sentation in the training set [68], [77] and the very large
predicate feature space also make the task of visual relation-
ship detection increasingly difficult. Let us take the Stanford
VRD dataset [19] as an example. This dataset contains 100
classes of objects, 70 classes of predicates, and a total of 30k
training relationship annotations. The number of possible
〈subject− predicate− object〉 triplets is 1002 ∗ 70 = 700k,
which means that a large number of possible real relation-

ships do not even have a training example. In fact, these
invisible relationships should not be ignore even though
they are not included in the training set. Fig. 3 presents an
example of this case. However, VtransE and MATransE are
not well-suited to dealing with this issue. Therefore, the de-
tection of unseen/new relationships in scenes is very impor-
tant to the building of a complete scene graph. Inspired by
VTransE [25], the goal of UVTransE [26] is to improve gen-
eralization for rare or unseen relations. Based on VTransE,
UVTransE also introduces a joint bounding box of subject
and object to facilitate better capturing of contextual infor-
mation and learns the embeddings guided by the constraint
predicate ≈ union(subject, object) − (subject + object).
UVtransE introduces the union of subject and object and
uses a context-augmented translation embedding model to
capture both common and rare relations in scenes. This
type of exploration is highly beneficial for constructing a
relatively complete scene graph. Finally, UVTransE com-
bines the scores of the vision, language, and object detection
modules to sort the predictions of the triple relationship.
The architectural details of UVTRansE are illustrated in Fig.
4. In addition, to solve the same problem associated with
new relationship discovery in scenes to generate incomplete
scene graphs, RLSV (Representation Learning via Jointly
Structural and Visual Embedding) [78] attempts to use exist-
ing scene graphs and images to predict the new relationship
between two entities, enabling it to achieve scene graph
completion. RLSV begins with the relevant knowledge of
the knowledge graph, incorporating the characteristics of
the scene graph, and proposes an end-to-end representation
learning model of joint structure and visual embedding.
Unlike TransE-based SGG methods, RLSV uses TransD [70]
to project the entities (objects and subjects) from entity space
to relation space by two mapping matrices. In RLSV, the
structural information is introduced into the second branch
by combining it with the visual features of objects and
subjects, which is another improvement over the existing
TransE-based SGG methods.

Unlike UVTransE and RLSV, which aim to find exist-
ing visual relationships but lack corresponding annotations
in the image, AT (Analogies Transfer) [79] tries to de-
tect those visual relationships that are not visible in the
training set. As shown in Fig. 3, the individual entities of
〈person− ride− dog〉 and 〈dog− ride− bike〉 are available
in the training set; however, their combination is not seen
in the training set, or the visual relationship is extremely
rare. As is evident, AT studies a more general phenomenon,
specifically those unseen relationships that are visible in the
training set for a single entity but not for the combination of
〈subject − predicate − object〉. The whole network model
utilizes analogy transformation to compute the similarity
between the unseen triplet and its similar triplets in order
to estimate this unseen relationship and has achieved good
results in unseen relationship detection. Compared with the
commonly used TransD/TransE-based SGG methods, this
SGG method using Analogies Transfer has good research
prospects.

Building on the insights obtained from knowledge
graph-related research, the TransE-based scene graph gen-
eration method has developed rapidly and attracted strong
interest from researchers. Related research results have also
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Fig. 4. The overall structure of UVTransE’s [26] visual detection model. It is composed of two main parts: visual module and language module.
In particular, UVTransE treats predicate embedding as predicate ≈ union(subject, object) − (subject + object). For comparison, VTransE [25]
models visual relationships by mapping the features of objects and predicates in a low-dimensional space, where the relationship triples can be
interpreted as vector translation; that is, assuming subject+ predicate ≈ object.

proven that this method is effective. In particular, the
TransE-based SGG method is very helpful for the mining
of unseen visual relationships, which will directly affect the
integrity of the scene graph. Related research is thus still
very valuable.

2.3 CNN-based SGG
CNN-based SGG methods attempt to extract the local and
global visual features of the image using convolutional
neural networks, then predict the relationships between the
subjects and objects via classification. In these methods,
the final features used for relationship identification are
obtained by jointly considering the local visual features of
multiple objects [58], or by carrying out feature interactions
between local features [30]. As CNN performs well at ex-
tracting the visual features of the image the works related
to CNN-based SGG are also very rich. In this part, we will
elaborate on these CNN-based SGG methods.

The scene graph is generated by analyzing the relation-
ship between multiple objects in the image dataset. It is
accordingly necessary to consider the connection between
related objects as much as possible, rather than focusing
on a single object in isolation. LinkNet [58] was proposed
to improve scene graph generation by explicitly modeling
inter-dependency among all related objects. More specifi-
cally, LinkNet designs a simple and effective relational em-
bedding module that jointly learns the connections between
all related objects. In addition, LinkNet also introduces a
global context encoding module and a geometrical layout
encoding module, which extract global context information
and spatial information between object proposals from the
entire image and thereby further improve the performance
of the algorithm. The specific LinkNet is divided into three
main steps: bounding box proposal, object classification, and
relationship classification. However, LinkNet considers the
relation proposal of all objects, which causes it to have huge
computational complexity.

On the other hand, as deep learning technology has
developed, the corresponding object detection research has
become increasingly mature [56], [82], [83], [84], [85], [86].
By contrast, the recognition of associations between differ-
ent entities for higher-level visual task understanding has
become a new challenge; this is also the key to scene graph
construction. As analyzed in Section 2.2, in order to detect
all relationships, it is both inefficient and unnecessary to
first detect all single objects and then classify all pairs of
relationships, as the visual relationship that really exists
in the quadratic relationship is very sparse. Using visual

Fig. 5. Comparison of the brief schematic diagrams of three CNN-
based SGG methods. (A) Rel-PN’s [28] compatibility evaluation module
uses two types of modules: a visual compatibility module and spatial
compatibility module. The visual compatibility module is mainly used
to analyzes the coherence of the appearance of the two boxes: the
spatial compatibility module is primarily used to explore the locations
and shapes of the two boxes. (B) IM-SGG (Interpretable Model for
Scene Graph Generation) [80] adds a semantic module based on Rel-
PN to capture the strong prior knowledge of the predicate. (C) BAR-
CNN (Box Attention Relational CNN) [81] introduces a box attention
mechanism to enhance object detection, which aids in detecting visual
relationships without adding additional complex components.

phrases [68] to express this visual relationship may there-
fore be a good solution. Rel-PN [28] has conducted corre-
sponding research in this direction. Similar to the region
proposals of objects provided by Region Proposal Networks
(RPN), Rel-PN [28] utilize a proposal selection module to
select the meaningful subject-object pairs for subsequent
relationship prediction. This operation will greatly reduce
the computational complexity of scene graph generation.
The model structure of Rel-PN is illustrated in Fig. 5(A).
Furthermore, IM-SGG (Interpretable Model for Scene Graph
Generation) [80], based on Rel-PN, considers three types
of features, namely visual, spatial, and semantic, which
are extracted by three corresponding models. Subsequently,
similar to Rel-PN, these three types of features are fused for
the final relationship identification. Different from Rel-PN,
IM-SGG utilized an additional semantic module to learn
the semantic features, and achieved better performances,
(see Fig. 5(B)). This method effectively improves the inter-
pretability of scene graph generation. More directly, using a
similar method to Rel-PN, ViP-CNN (Visual Phrase Guided
Convolutional Neural Network) [30] also clearly treats the
visual relationship as a visual phrase containing three com-
ponents. ViP-CNN [30] attempts to jointly learn the specific
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Fig. 6. Schematic diagram of object detection. The use of object de-
tection alone essentially cannot aid in the recognition of visual relation-
ships. The interaction of features between different objects is crucial to
the recognition of relationships.

visual features for the interaction to facilitate consideration
of the visual dependency. In ViP-CNN, the PMPS (Phrase-
guided Message Passing Structure) is proposed to model the
interdependency information among local visual features
using a gather-broadcast message passing flow mechanism.
ViP-CNN has achieved significant improvements in speed
and accuracy. In addition, to further improve the scene
graph generation accuracy, some methods have also studied
the interaction between different features with the goal of
more accurately predicting the visual relationship between
different entities. This is because the independent detection
and recognition of a single object provide little assistance
in fundamentally recognizing visual relationships. Fig. 6
presents an example of a case in which even the most
perfect object detector finds it difficult to distinguish people
standing beside horses from people feeding horses. There-
fore, the information interaction between different objects
is extremely important to the understanding of visual re-
lationships. Many related works have been published on
this subject. For example, the rich interactions between
detected object pairs are used for visual relationship recog-
nition in Zoom-Net [74]. Zoom-Net achieves compelling
performance by successfully recognizing complex visual
relationships through the use of deep message propagation
and the interaction between local object features and global
predicate features, without the use of any linguistic priors.
VIP-CNN [30] also uses similar feature interactions. The key
difference is that the CA-M (Context-Appearance Module)
proposed by VIP-CNN attempts to directly fuse pairwise
features to capture contextual information, while the SCA-
M (Spatiality-Context-Appearance Module) proposed by
Zoom-Net [74] performs spatially-aware channel-level lo-
cal and global context information fusion. Therefore, SCA-
M has more advantages when capturing the spatial and
contextual relationships between the subject, predicate, and
object features. Fig. 7 presents the structure comparison dia-
gram of the Appearance Module (A-M) without information
interaction, along with the Context-Appearance Module
(CA-M) and Spatiality-Context-Appearance Module (SCA-
M).

An attention mechanism is also a good tool for improv-
ing visual relationship detection. BAR-CNN (Box Attention
Relational CNN) [81] observed that the receptive field of
neurons in the most advanced feature extractors [67], [87]
may still be limited, meaning that the model may cover
the entire attention map. To this end, BAR-CNN proposes
a box attention mechanism; this enables visual relationship
detection tasks to use existing object detection models in or-
der to complete the corresponding relationship recognition

tasks without introducing additional complex components.
This is a very interesting concept, and BAR-CNN has also
obtained competitive recognition performance. A schematic
illustration of BAR-CNN is presented in Fig. 5(C).

The CNN-based SGG method is very rich, and many in-
teresting variations have been proposed. However, there are
still many remaining challenges requiring further research,
including how to reduce the computational complexity as
much as possible while ensuring deep interaction between
the triplet’s different features, how to deal with the real
but very sparse visual relationship in reality, etc. Identifying
solutions to these problems will further deepen the research
related to the CNN-based SGG method.

2.4 RNN/LSTM-based SGG

A scene graph is a structured representation of an image.
The information interaction between different objects and
the contextual information of these objects is crucial to
the recognition of the visual relationship between them.
Models based on RNN and LSTM have natural advantages
in capturing the contextual information in the scene graph
and reasoning on the structured information in the graph
structure. RNN/LSTM-based methods are thus is also a
popular research direction.

As discussed above, in order to make full use of the
contextual information in the image to improve the accuracy
of scene graph generation, IMP (Iterative Message Passing)
[57] was proposed. IMP attempts to use standard RNN to
solve the scene graph inference problem and iteratively im-
prove the model’s prediction performance through message
passing. The main highlight of this approach is its novel
primal-dual graph, which defines the channels for messages
passing from node GRUs [88] to edge GRUs to achieve scene
graph generation. This form of information interaction helps
the model to more accurately identify the visual relation-
ships between objects. Unlike cases of interaction between
local information, such as IMP, MotifNet (Stacked Motif
Network) [32] begins from the assumption that the strong
independence assumption in the local predictor [30], [34],
[57] actually limits the quality of global prediction. To this
end, MotifNet encodes global context information through
recurrent sequential architecture LSTMs (Long Short-term
Memory Networks) [89]. However, MotifNet [32] only con-
siders the context information between objects while failing
to take scene information into account. There have also been
some works [35], [57], [90] on the classification of relation-
ships by exchanging the context between nodes and edges.
However, the above-mentioned SGG methods focus pri-
marily on the structural-semantic features in a scene while
ignoring the correlations among different predicates. For
this reason, [31] proposed a two-stage predicate association
network (PANet). The main goal of the first stage to extract
instance-level and scene-level context information, while
the second stage is mainly used to capture the association
between predicate alignment features. In particular, an RNN
module is used in order to fully capture the association be-
tween alignment features. This kind of predicate association
analysis has also achieved good results.

However, the methods discussed above often rely on
object detection and predicate classification between objects.
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Fig. 7. (a) The ROI-pooled feature of the subject (S), predicate (P), and object (O) of a given input image. (b) Appearance Module (A-M) without
information interaction. (c) Context-Appearance Module (CA-M) in ViP-CNN [30]. (d) Spatiality-Context-Appearance Module (SCA-M) in Zoom-Net
[74].

There are two obvious limitations of this approach: first,
the object bounding box or relationship pairs generated via
the object detection method are not always necessary for
the generation of the scene graph; secondly, scene graph
generation depends on the probabilistic ranking of the out-
put relationships, which will lead to semantically redundant
relationships [91]. For this reason, AHRNN (attention-based
hierarchical RNN) [92] proposed a hierarchical recurrent
neural network based on a visual attention mechanism.
This approach first uses the visual attention mechanism
[93], [94] to resolve the first limitation. Secondly, AHRNN
regards the recognition of relational triples as a sequence
learning problem using recurrent neural networks (RNN).
In particular, it employs hierarchical RNN to model rela-
tional triples in order to more effectively process long-term
context information and sequence information [95], [96],
thereby avoiding the need to rank the probability of output
relationships.

On the other hand, VCTREE (Visual Context TREE
model) [33] observed that the previous scene graphs ei-
ther adopted chains [32] or a fully-connected graph [23],
[35], [57], [74], [97], [98], [99]. However, VCTREE believes
that these two prior structures may not be optimal, as
the chain structure is too simple and may only capture
simple spatial information or co-occurrence bias; moreover,
the fully connected graph lacks the distinguishing structure
of hierarchical and parallel relationships. In order to solve
this problem, VCTREE proposed composite dynamic tree
structures, which can use TreeLSTM [100] for efficient con-
text coding and thus effectively represent the hierarchical
and parallel relationships in visual relationships. This tree
structure provides a new research direction for scene graph
representation. Fig. 8 presents a comparison of the chain
structure, fully connected graph structure, and dynamic
tree structure of the scene graph. SIG (Sketching Image
Gist) [101] also proposed a scene graph with a similar tree
structure; the key difference stems from the observation that
humans tend to describe the subjects and key relationships
in the image first when analyzing scenes, meaning that a
hierarchy analysis with primary and secondary order is
more in line with human habits. To this end, SIG pro-
posed a human-mimetic hierarchical scene graph generation
method. Under this approach, the scene is represented by a
human-mimetic HET (Hierarchical Entity Tree) composed
of a series of image regions, while Hybrid-LSTM (Hybrid

Fig. 8. A comparison of the chains [32], fully connected graph [23],
[35], [57], [74], [97], [98], [99] and dynamic tree [33] structure of the
scene graph. The dynamic tree structure on the left shows a left-child
right-sibling binary trees, where the left branches (red) represents the
hierarchical relationships, while the right branches (blue) represents
the parallel relationship. Compared with chain and graph structures,
dynamic tree have obvious natural advantages in the representation of
hierarchical and parallel relationships.

Long Short-Term Memory) is used to parse HET, thereby
enabling the hierarchical structure [33] and siblings context
[32] information in HET to be obtained.

2.5 Graph-based SGG

The scene graph can be regarded as a graph structure.
An intuitive approach would therefore be to improve the
generation of scene graphs with the help of graph theory.
The GCN [102], [103], [104] can operate on graph structure
data by transmitting local information [105], [106]. GCN
has been proven to be highly effective in tasks such as
relational reasoning [107], graph classification [108], [109],
[110], [111], node classification in large graphs [40], [112],
and visual understanding [113], [114], [115]. Accordingly,
many researchers have directly studied the scene graph
generation method based on GCN.

As discussed in Section 1.2, the current scene graph
generation methods can be roughly divided into two cat-
egories: bottom-up and top-down methods. However, types
of frameworks build a quadratic number of objects, which
is time-consuming. Therefore, an efficient subgraph-based
framework for scene graph generation, called Factorizable
Net [35], is proposed to promote the generation efficiency of
the scene graph. Under this approach, the detected object
region proposals are paired to facilitate the construction
of a complete directed graph. Thereafter, a more precise
graph is generated by merging edges corresponding to
similar union regions into a sub-graph; each sub-graph has
several objects and their relationships are represented as
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edges. By substituting the original scene graph with these
subgraphs, Factorizable Net can achieve higher generation
efficiency of the scene graph. Adopting a different approach
to Factorizable Net’s attempt to decompose the scene graph
in order to improve the efficiency of scene graph generation,
Graph R-CNN [90] attempts to trim the original scene
graph (removing those unlikely relationships) to generate a
sparse candidate graph structure. Finally, an attention graph
convolutional network (AGCN) is used to integrate global
context information to promote more efficient and accurate
scene graph generation.

The graph-based attention mechanism also has impor-
tant research value in the generation of scene graphs. For
example, previous scene graph generation work [34], [57],
[90], [114], [116] often requires prior knowledge of the graph
structure. In addition, these methods tend to ignore the
overall structure and information of the entire image, as
they capture the representation of nodes and edges in a
step-by-step manner. Moreover, the one-by-one detection
of the visual relationship of the paired regions [21], [30],
[74], [117], [118], [119] is also poorly suited to describing the
structure of the entire scene. For this reason, in ARN (At-
tentive Relational Network) [36], a semantic transformation
module is proposed that produces semantic embeddings
by transforming label embeddings and visual features into
the same space, while a relation inference module is used
to predict the entity category and relationship as the final
scene graph result. In particular, to facilitate describing the
structure of the entire scene, ARN proposed a graph self-
attention-based model aimed at embedding a joint graph
representation to describe all relationships. This module
helps in the generation of more accurate scene graphs.

When predicting the visual relationship of the scene
graph, the reading order of entities in the context encoding
using RNN/LSTM [120] also has a crucial influence on the
scene graph generation. A fixed reading order may not be
optimal. A scene graph generator should reveal the con-
nection between objects and relations in order to improve
prediction precision, even if different types of inputs are
present. Formally, given the same features, the same result
should be obtained by a framework or a function F even if
the input has been permuted. Motivated by this observation,
the architecture of a neural network for SGG should ideally
remain invariant to a particular type of input permutation.
Herzig et al. [114] accordingly proved this property based
on the fact that such an architecture or framework can
gather information from the holistic graph in a permutation-
invariant manner. Based on this feature, these authors pro-
posed several common architecture structures and obtained
competitive performance.

For most SGG approaches [19], [23], [30], [39], [55], [57],
the long-tailed distribution of relationships remains a chal-
lenge to relational feature learning. Existing methods are
often unable to deal with unevenly distributed predicates.
Therefore, Dornadula et al. [121] attempted to construct a
scene graph via few-shot learning of predicates, which can
scale to new predicates. The SGG model based on few-
shot Learning attempts to fully train the graph convolu-
tion model and the spatial and semantic shift functions
on relationships with abundant data. For their part, new
shift functions are fine-tuned with new, rare relationships

of a few examples. When compared to conventional SGG
methods, the novelty of this model is that predicates are
defined as functions, such that object notations are useful
for few-shot predicate forecasting; these include a forward
function that turns subject notations into objects and a cor-
responding function that changes the object representation
back into subjects. The model achieves good performance in
the learning of rare predicates.

A comprehensive, accurate and coherent scene graph
is what we expect to achieve, and the semantics of the
same node in different visual relationships should also be
consistent. However, the currently widely used supervised
learning paradigm based on cross-entropy may not guar-
antee the consistency of this visual context. This is be-
cause this paradigm tends to predict pairwise relationships
in an independent way [19], [25], [119], [122], while hub
nodes (those that belong to multiple visual relationships
at the same time) and non-hub nodes are given the same
penalty. This is unreasonable. For this reason, [123] pro-
posed a Counterfactual critic Multi-Agent Training (CMAT)
approach. More specifically, CMAT is the first work to define
SGG as a cooperative multi-agent problem. This approach
solves the problems of graph consistency and graph-level
local sensitivity by directly maximizing a graph-level metric
as a reward (corresponding to the hub and non-hub nodes
being given different penalties). Similarly, RelDN (Relation-
ship Detection Network) [18] also found that applying only
cross-entropy loss may have an adverse effect on predi-
cate classification; for example, Entity Instance Confusion
(confusion between different instances of the same type)
and Proximal Relationship Ambiguity (subject-object pair-
ing problems in different triples with the same predicate).
RelDN is proposed to tackle these two problems. In RelDN,
three types of features for semantic, visual, and spatial
relationship proposals are combined by means of entity-
wise addition. These features are then applied to obtain a
distribution of predicate labels via softmax normalization.
Thereafter, contrastive losses between graphs are specifi-
cally constructed to solve the aforementioned problems.

Scene graphs provide a natural representation for rea-
soning tasks. Unfortunately, their non-differentiable repre-
sentations it difficult to use scene graphs directly as interme-
diate components of visual reasoning tasks. Therefore, DSG
(Differentiable Scene-Graphs) [124] are employed solve the
above obstacles. The visual features of objects are used as the
inputs to the differentiable scene-graph generator module of
DSGs, which is a set of the new node and edge features. The
novelty of the DSG architecture lies in its decomposition
of the scene graph components, enabling each element in a
triplet to be represented by a dense descriptor. Thus, DSGs
can be directly used as the intermediate representation of
downstream inference tasks.

Although we have investigated many graph-based scene
graph generation methods, there are still many other related
methods. For example, [125] proposes a deep generative
probabilistic graph neural network (DG-PGNN) to generate
a scene graph with uncertainty. SGVST [126] introduces
a scene graph-based method to generate story statements
from image streams. This approach uses GCN to capture
the local fine-grained region representation of objects in
the scene graph. We can conclude from the above that the
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Fig. 9. Examples of semantic similarity helping with visual relationship
inference. By mining object pairs with similar semantics [girl, woman]
and [horse, elephant], language priors can help with the inference that
the relationship between ”woman” and ”elephant” may be ”riding”. For
example, if we know that [girl, woman] are subclasses of person, and
[horse, elephant] are subclasses of animals, we can easily infer from
[girl, ride, horse] that the relationship between ”woman” and ”elephant”
also be ”riding”, even though these two relationships differ greatly in
terms of their visual features.

graph-based scene graph generation method has attracted
significant research attention due to its obvious ability to
capture structured information.

3 SGG WITH PRIOR KNOWLEDGE

For SGG, relationships are combinations of objects, and its
semantic space is wider than that of the objects. In addition,
it is very difficult to exhaust all relationships from the SGG
training data. It is therefore particularly critical to effectively
learn relationship representations from a small amount of
training data. The introduction of prior knowledge may thus
greatly assist in the detection and recognition of visual re-
lationships. Therefore, in order to efficiently and accurately
generate a complete scene graph, the introduction of prior
knowledge (such as language prior, visual prior, knowledge
prior, context, etc.) is also crucial. In this section, we will
introduce the related work of scene graph generation with
prior knowledge.

3.1 SGG with Language Prior
Language priors typically use the information embedded
in semantic words to fine-tune the possibility of relation-
ship prediction, thereby improving the accuracy of visual
relationship prediction. Language priors can help the recog-
nition of visual relationships through the observation of
semantically related objects. For example, horses and ele-
phants may be arranged in semantically similar context,
e.g., ”a person riding a horse” and ”a person riding an ele-
phant”. Therefore, although the co-occurrence of elephants
and persons is not common in the training set, through the
introduction of language priors and the study of the more
common examples (such as ”a person riding a horse”), we
can still easily infer that the relationship between a person
and an elephant may be one of riding. This idea is illustrated
in Fig.9. This approach also helps to resolve the long tail
effect in visual relationships.

Many researchers have conducted detailed studies on
the introduction of language priors. For example, Lu et al.
[19] suggested training a visual appearance module and a

language module simultaneously, then combining the two
scores to infer the visual relationship in the image. In partic-
ular, the language a priori module projects the semantic-like
relationships into a tighter embedding space. This helps the
model to infer a similar visual relationship (”person riding
an elephant”) from the ”person riding a horse” example.
Similarly, VRL (deep Variation-structured Reinforcement
Learning) [37] and CDDN (Context-Dependent Diffusion
Network) [38] also use language priors to improve the
prediction of visual relationship; the difference is that [19]
uses semantic word embedding [127] to fine-tune the pos-
sibility of predicting relationships, while VRL follows the
variational-structured traversal scheme over a directed se-
mantic action graph from the language prior, meaning that
the latter can provide richer and more compact semantic
association representation than word embedding. Moreover,
CDDN finds that similar objects have close internal correla-
tions, which can be used to infer new visual relationships. To
this end, CDDN uses word embedding to obtain a semantic
graph, while simultaneously constructing a spatial scene
graph to encode global context interdependency. CDDN can
effectively learn the latent representation of visual relations
through the combination of prior semantics and visual
scenes; furthermore, considering its isomorphic invariance
to graphs, it can cater well to visual relation detection.

On the other hand, although the language prior can
compensate for the difference between model complexity
and dataset complexity, its effectiveness will also be affected
when the semantic word embedding falls short [128]. For
this reason, [117] further introduces a relation learning
module with a priori predicate distribution on the basis of
IMP [57] to better learn visual relations. In more detail, a
pre-trained tensor-based relation module is added to [117]
as a dense relation prior to fine-tune the relation estimation,
while an iterative message-passing scheme with GRUs is
used as a GCN method of promoting the scene graph
generation performance with better feature representation.
In addition to using language priors, [129] also combines
visual cues to identify visual relationships in images and
locate phrases. For its part, [129] models the appearance,
size, location, and attributes of entities, along with the spa-
tial relationship between object pairs connected by verbs or
prepositions, and jointly infers visual relationships through
automatically learning and combining the weights of these
clues.

3.2 SGG with Statistical Prior

Statistical prior is also a form of prior knowledge widely
used by SGG, as objects in the visual scene usually have
strong structural regularity [32]. For example, people tend
to wear shoes, while mountains tend to have water around
them. In addition, 〈cat − eat − fish〉 is common, while
〈fish − eat − cat〉 and 〈cat − ride − fish〉 are very un-
likely. This relationship can thus be expressed using prior
knowledge of statistical correlation. Modeling the statistical
correlation between object pairs and relationships can help
us in correctly identifying visual relationships.

Due to the spatially large and long-tailed nature of
relationship distributions, simply using the annotations con-
tained in the training set would be insufficient. Moreover,
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it is difficult to collect an adequate amount of labeled
training data. For this reason, LKD (Linguistic Knowledge
Distillation) [39] uses not only the annotations inside the
training set, but also text publicly available on the Internet
(Wikipedia) to collect external language knowledge. This is
mainly achieved by tallying the vocabulary and expressions
used by humans to describe the relationships between pairs
of objects in the text, then calculating the conditional proba-
bility distribution (P (pred|subj, obj)) of the predicate given
a pair of 〈subj, obj〉. A novel contribution is that of using
knowledge distillation [130] to acquire prior knowledge
from internal and external linguistic data in order to solve
the problem of long-tail relationships.

Similarly, DR-Net (Deep Relational Networks) [23] also
noticed the strong statistical correlation between the triples
〈subj − pred − obj〉. The difference is that DR-Net pro-
posed a deep relationship network to take advantage of
this statistical correlation. DR-Net first extracts the local
regions and spatial masks of each pair of objects, then
inputs them together with the appearance of a single object
into the deep relational network for joint analysis, thereby
obtaining the most likely relational category. In addition,
MotifNet [32] performed a statistical analysis of the co-
occurrences between the relationships and object pairs on
the Visual Genome dataset [20], finding that these statistical
co-occurrences can provide strong regularization for rela-
tionship prediction. To this end, MotifNet uses LSTM [89] to
encode the global context of objects and relationships, thus
enabling the scene graph to be parsed. However, although
the above methods [23], [32] also observed the statistical co-
occurrence of the triple, the depth model they designed im-
plicitly mined this statistical information through message
transmission. KERN (Knowledge-Embedded Routing Net-
work) [131] also took note of this statistical co-occurrence.
The difference is that KERN formally expresses this statisti-
cal knowledge in the form of a structured graph, which is in-
corporated into the deep propagation network as additional
guidance. This can effectively regularize the distribution of
possible relationships, thereby reducing the ambiguity of
prediction.

In addition, similar statistical priors are also used in
complex indoor scene analysis [132]. Statistical priors can
effectively improve performance on corresponding scene
analysis tasks.

3.3 SGG with Knowledge Graph

Knowledge graphs are a rich knowledge base that encode
how the world is structured. Common-sense knowledge
graphs have thus been used as prior knowledge to effec-
tively help the generation of scene graphs.

To this end, GB-Net (Graph Bridging Network) [133]
proposes a new perspective, which constructs scene graphs
and knowledge graphs into a unified framework. More
specifically, GB-Net regards the scene graph as the image-
conditioned instantiation of the commonsense knowledge
graph. Based on this perspective, the generation of scene
graphs is redefined as a bridge mapping between scene
graphs and common sense graphs. A schematic diagram of
this idea is presented in Fig.10. In addition, the deviations
in the existing label dataset on object pairs and relationship

Fig. 10. Left: Sample image and truth scene graph. Right: The relevant
part of the commonsense knowledge graph. GB-Net [133] defines scene
graph generation as the problem of establishing a bridge between two
graphs.

labels, along with the noise and missing annotations they
contain, all increase the difficulty of developing a reliable
scene graph prediction model. For this reason, KB-GAN
(knowledge base and auxiliary image generation) [134] pro-
posed a scene graph generation algorithm based on external
knowledge and image reconstruction loss to overcome the
problems found in datasets. More specifically, KB-GAN
uses ConceptNet’s [135] English subgraph as the knowledge
graph; the knowledge-based module of KB-GAN improves
the feature refinement process by reasoning on a basket of
common sense knowledge retrieved from ConceptNet.

3.4 Discussion

Prior knowledge has been proven to significantly improve
the quality of scene graph generation. Existing methods use
either an external curated knowledge base, such as Concept-
Net [134], [136], [137], [138], or the statistical information
found in the annotation corpus to obtain commonsense
data. However, the former is limited by incomplete external
knowledge [32], [39], [131], [139], while the latter is often
based on hard-coded heuristic algorithms such as the co-
occurrence probability of a given category. Therefore, the
latest research [140] attempts to use visual commonsense as
a machine learning task for the first time, and automatically
obtains visual commonsense data directly from the dataset
to improve the robustness of scene understanding. While
this exploration is very valuable, the question of how to
acquire and make full use of this prior knowledge remains
a difficult one that merits further attention.

4 APPLICATIONS OF SCENE GRAPH

The scene graph can describe the objects in a scene and the
relationships between the objects, meaning that it provides
better representations for scene understanding-related vi-
sual and textual tasks and can greatly improve the model
performance of these tasks. Fig.11 presents some examples
of scene graph application scenarios. Next, we will conduct
a detailed review of these scene graph applications one by
one.
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Fig. 11. Examples of scene graph application scenarios. These applications include visual-textual transformers [41], [141], [142], image text retrieval
[8], [14], [143], visual question answering [48], [144], image understanding and reasoning [50], [51], [145], 3D scene graphs [9], [52], and the
detection and recognition of human-object interaction and human-human interaction [22], [146], [147], [148], [149].

4.1 Visual-Textual Transformer

Scene graphs contain the structured semantic information
in a visual scene, and this semantic information is mainly
reflected in the representations of objects, attributes, and
pairwise relationships in images. Thus, scene graphs can
provide favorable reasoning information for the vision-text
tasks of image generation and image/video captioning.

4.1.1 Image Generation

Although text-based image generation has made exciting
progress in the context of simple textual description, it is
still difficult to generate images based on complex textual
descriptions containing multiple objects and their relation-
ships. Image generation based on scene graphs is better
able to deal with complex scenes with multiple objects and
desired layouts.

Generating complex images from layouts is more con-
trollable and flexible than text-based image generation.
However, it remains a difficult one-to-many problem, and
only limited information can be conveyed by a bounding
box and its corresponding label. To generate a realistic im-
age according to the corresponding scene graph with object
labels and their relationships, Johnson et al. [41] proposed
an end-to-end image generation network model. Compared
with text-based image generation methods, a final complex
images with many recognizable objects can be generated
using this method by explicitly inferring the objects and
relationships based on structured scene graphs. However,
this image generation method [41] cannot introduce new
or additional information to existing descriptions, and are
limited to generating images at one time. Therefore, Mittal
et al. proposed a recursive network architecture [141] that
preserves the image content generated in previous steps and
modifies the accumulated images based on newly provided
scene information. This method allows the context in se-
quentially generated images to be preserved by subjecting
certain information to subsequent image generation con-
ditions. However, there are still problems associated with
ensuring that the generated image conforms to the scene
graph and measuring the performance of the image gener-
ation models. Subsequently, an image generation method
was proposed that harnesses the scene graph context to
improve image generation [142]. The scene context network

encourages the generated images not only to appear re-
alistic, but also to respect the scene graph relationships.
Similarly, Layout2Im (Layout-based Image generation) [150]
is also an end-to-end model for generating images from
layouts. Different from other related methods, Layout2Im
breaks down the representations of each object into specified
and unspecified parts, and individual object representations
are grouped together for encoding the layouts.

From [41], [141], [142], [150], we can see that generating
a layout from a scene graph is an important step in layout-
based image generation. Therefore, Herzig et al. [42] and
Tripathi et al. [151] attempted to improve the quality of
images generated from scene graphs by generating better
layouts. Generating realistic images with complex visual
scenes is a challenging task, especially when we want to
control the layouts of the generated images. Herzig et al.
[42] present a novel SRC (Soft Relations Closure) Module to
inherently learn the canonical graph representations, with
the weighted graph representations obtained from a GCN
used to generate the scene layouts. SRC can canonicalize
graphs to improve layout generation. Moreover, Tripathi
et al. [151] proposed a scene layout generation system to
generate structured scene layouts. Similarly, to solve the lay-
out prediction problem, Schroeder et al. proposed a layout
prediction framework based on Triplet-Aware Scene Graph
Embeddings [152]. Triplet embeddings with supervisory
signals are used to improve scene layout prediction, while a
data augmentation technique is utilized to maximize triplet
numbers during training. These two methods of additional
supervision and data augmentation can enhance the em-
bedding representation, enabling better layout outputs to
be obtained.

The above image generation methods from the scene
graph are based on layouts and aim at ensuring semantic
consistency between generated images and scene graphs;
however, the visual appearance of the obtained objects
and images. PasteGAN [153] is a semi-parametric method
for image generation based on scene graphs and object
cropping, designed improve the visual quality of generated
images. The proposed Crop Refining Network and Object-
Image Fuser with attention mechanism in PasteGAN can
encode objects’ spatial arrangement, appearances, and in-
teractions. Compared with most scene graph image gener-
ation methods, PasteGAN can parameterize control of the
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appearance of objects in the generated images. In addition,
one interesting approach to image generation utilizes image
collections to generate a narrative collage based on scene
graphs [154]. In this process, the object relationship is crucial
to the object positions in the narrative collage. However, the
scene graphs used here are primarily rule-based to build
and evaluate. Furthermore, SS-SGN (Spatio-Semantic Scene
Graph Network) [155] proposes a scene graph-based image
modification method that can interact with users. More
specifically, the user only needs to change a certain node
or edge of the scene graph and then apply this change to
edit the image. This provides users with more flexibility to
modify or integrate new content into the image.

4.1.2 Image/Video Captioning
Traditional image captioning methods rely on the visual
features of the objects detected in images. Here, the natural
language description is generated by models of natural
language reasoning, such as RNN or LSTM. However, these
methods can not make full use of the semantic relationships
between objects in images, which leads to the generated lan-
guage description being inaccurate. The image captioning
methods based on scene graph solve this problem to some
extent by capturing the relationship information between
objects.

The method proposed in [156] is an image captioning
method with semantic representations that operates by
embedding a scene graph as an intermediate state. This
method is easy to execute, does not require complex image
preprocessing, and is competitive with existing methods.
Moreover, since graphical representations with conceptual
positional binding can improve image captioning, TPsgtR
(Tensor Product Scene-Graph-Triplet Representation) [157]
is proposed for image caption generation using regional
visual features. In TPsgtR, the technique of neuro-symbolic
embedding can embed the relationships identified among
different image regions into concrete forms (neural sym-
bolic representations), rather than relying on the model
to form all possible combinations. These neural symbolic
representations aid in defining the neural symbolic space
and can be transformed into better captions for images.
In addition, to use the visual relations contained in scene
graphs for the purpose of improving image captioning, the
visual relational features are learned from a neural scene
graph generator (Stacked Motif Network) [120], facilitating
the grounding of language in visual relations.

From the perspective of human cognition, vision-based
language generation is related to high-level abstract sym-
bols. Abstracting the scenes into symbols will accordingly
provide a clear path to language description generation.
Therefore, SGAE (Scene Graph Auto-Encoder) [43] is pro-
posed to incorporate these inductive biases into the encoder-
decoder models for image captioning, an approach expected
to help this encoder-decoder model exhibit less overfitting
to the dataset bias. Similarly, to be able to generate the type
of image descriptions desired by the human use, Chen et al.
proposed an ASG (Abstract Scene Graph) structure [158] to
represent user intentions, as well as to control the generated
descriptions and detailed description in the scenes. ASG can
identify users’ intention and semantics in graphs, which en-
ables it to generate the required caption based on the graph

structure, and actively considers users’ intention to produce
the desired image caption, which significantly enhances
the image caption diversity. Unlike ASG, which generates
diversified captions by focusing on different combinations
of objects in the scene graph, the core of SGD (Scene Graph
Decomposition) [159] is to decompose the scene graph into
a set of subgraphs, then use a deep model to select the most
important subgraphs. SGD can obtain accurate, diverse, and
controllable subtitles by using subgraphs.

In previous work, entities in images are often considered
separately, which leads to the lack of structured information
in the generated sentences. Scene graphs are structured by
leveraging both visual features and semantic knowledge,
and image captioning frameworks are proposed based on
the structural-semantic information within an image [44],
[160] and across different images [11]. In [44], an image cap-
tion framework based on scene graph is proposed to utilize
the structural-semantic features in images. A hierarchical-
attention-based module is designed to learn the correlation
scores of the visual features and semantic relationship fea-
tures, which are used to obtain the final context feature
vector, instead of simply concentrating two feature vectors
into a single vector. SGC (Scene Graph Captioner) [160]
captures the integrated structural-semantic features from
visual scenes, after which LSTM-based models translate
these semantic features into the final text description. Fur-
thermore, a scene graph can also be used to generate the
story from an image stream; the proposed SGVST in [11]
can model the visual relations both within one image and
across images, which is conducive to image captioning. This
method significantly improves the fluency and richness of
the generated stories.

At present, most image captioning models rely heavily
on image-caption pair dataset, while unpaired image cap-
tioning presents great challenges when it comes to extract-
ing and mapping different features of visual and textual
modalities. Therefore, there are high costs associated with
obtaining large-scale paired data of images and texts. To
solve this problem, an unpaired scene graph-based image
captioning approach is presented in [45] to capture rich
semantic information from scenes. It further proposes an
unsupervised feature extraction method to learn the scene
graph features by mapping from the visual features of the
images to the textual features of the sentences.

4.2 Image-Text Retrieval

Image-text retrieval is a classic multi-modal retrieval task.
For retrieving the target samples (images or textual sen-
tences), the query could be the content of an image or the
text describing the image. Most content-based image re-
trieval methods use low-level visual features. Recently, there
has been increasing interest in models that jointly reason
about visual and textual features. However, these models
have limitations in terms of their expressiveness. For exam-
ple, text-based image retrieval methods are impacted by the
inherent referential uncertainty of textual representations.
The scene graph is a structured representation of visual
scenes that can explicitly represents the objects, attributes,
and relationships in images. These structured feature rep-
resentations provide a great deal of help to models when
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they search the corresponding samples. Therefore, scene
graph-based image-text retrieval has broad development
prospects.

Image retrieval via scene graph was first applied in
[8]. By replacing textual descriptions with scene graphs
for image retrieval, the model can accurately describe the
semantics of images without on unstructured texts, and
can further retrieve related images in more open and inter-
pretable retrieval tasks. Subsequently, another scene graph-
based image retrieval method is proposed by Schuster et
al [14]. These may be the two earliest methods to involve
the construction and applications of the scene graph. The
results of their experiments show that image retrieval using
scene graphs achieves better results than traditional image
retrieval methods based on low-level visual features.

At present, most existing cross-modal scene retrieval
methods ignore the semantic relationship between objects
in the scene and the embedded spatial layout information.
Moreover, these methods adopt a batch learning strategy
and are thus unsuitable for processing stream data. To
solve these problems, an online cross-modal scene retrieval
method [143] is proposed that utilizes binary representa-
tions and semantic graphs. The semantic graph can serve
as a bridge between the scene graph and the corresponding
text that enables measurement of the semantic correlation
between different modal data. However, most text-based
image retrieval models experience difficulties when search-
ing large-scale image data, such that the model needs to
resort to an interactive retrieval process through multiple it-
erations of question-answering. To solve this problem, Ram-
nath et al. proposed an image retrieval framework based on
scene graph [161], which models the retrieval task as a learn-
able graph matching problem between query graphs and
catalog graphs. Their approach incorporated the strategies
and structural constraints of the retrieval task into inference
modules using multi-modal graph representation. Similarly,
SQIR (Structured Query-Based Image Retrieval Using Scene
Graphs) [162] is also an image retrieval framework based
on scene graphs. The difference is that SQIR determined
that structured queries (e.g. ”little girl riding an elephant”)
are more likely to capture the interaction between objects
than single-object queries (e.g. ”little girl”, ”elephant”). To
this end, SQIR proposes an image retrieval method based on
scene graph embedding, which treats visual relationships as
directed subgraphs of the scene graph for the purposes of
the structured query.

In addition, the image-text retrieval task is formulated as
a cross-modal matching task. Given a query in one modality
(a sentence query or an image query), the task of image-
text cross-modal retrieval is to find the most similar sample
from the database in another modality. In 2020, Wang et
al. [46] proposed two kinds of scene graphs (visual scene
graph (VSG) and textual scene graph (TSG)) to represent
image and text respectively, while the scene graph matching
model aims to evaluate the similarity of the image-text
pairs by dissecting the input image and text sentence into
scene graphs. The model collects object features and rela-
tionship features, then calculates the similarity score at the
object-level and relationship-level, respectively. However,
the above methods are often based on fixed text or images
for cross-modal retrieval. GEDR (Graph Edit Distance Re-

ward) [163] proposes a more creative and interactive image
retrieval method. More specifically, similar to SS-SGN [155],
GEDR attempts to edit the scene graph; in more detail,
GEDR edits the scene graph according to the user’s text
instructions on the given image prediction scene graph to
perform image retrieval. This makes image retrieval more
flexible and promotes easier user interaction.

4.3 Visual Question Answering
VQA is also a multimodal feature learning task. Compared
with traditional VQA methods, scene graphs can capture
the essential information of images in the form of graph
structures, which helps scene graph-based VQA methods to
outperform traditional algorithms.

Inspired by the application of traditional QA systems
on knowledge graphs, an alternative approach scene graph-
based approach is investigated [164]. Zhang et al. explored
how to effectively use scene graphs derived from images
for visual feature learning, and further applied the graph
networks (GN) for encoding the scene graph and per-
forming reasoning according to the questions provided.
Moreover, Yang et al. citeyang2018scene aimed improve
performance on VQA tasks through the use of scene graphs,
and accordingly proposed a new model named Scene GCN
(Scene Graph Convolutional Network) [144] to solve the
relationship reasoning problem in a visual question-and-
answer context. To effectively represent visual relational
semantics, a visual relationship encoder is built to yield dis-
criminative and type-aware visual relationship embeddings,
constrained by both the visual context and language priors.
To confirm the reliability of the results predicted by VQA
models, Ghosh et al. [48] proposed an approach named XQA
(eXplainable Question Answering), which may be the first
VQA model to generate natural language explanations. In
XQA, natural language explanations comprised of evidence
are generated to answer the questions, which are asked
with regard to images using two sources of information:
the entity annotations generated from the scene graphs
and the attention map generated by a VQA model. As
can be determined from these research works, since scene
graphs can provide information regarding the relationships
between objects in visual scenes, there is significant scope
for future research into scene graph-based VQA.

4.4 Image Understanding and Reasoning
Fully understanding an image necessitates the detection
and recognition of different visual components, as well as
inferring the higher-level events and activities by combining
visual modules, reasoning modules, and priors. Therefore,
the scene graph with triplets of 〈subject−relation−object〉
contains information that is very important to image under-
standing and reasoning. Visual understanding requires the
model to have visual reasoning ability. However, existing
methods tend to pay less attention to how to make a
machine (model) ”think”, and instead attempt to extract the
pixel-level features directly from the images; this is despite
the fact that it is difficult to carry out accurate reasoning
using pixel-level visual features alone. The task of image
reasoning should be based directly on the detected objects,
rather than on pixel-level visual features.
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More specifically, similar to traditional visual under-
standing methods, the objects, scenes, and other constituent
visual components first need to be detected by a deep learn-
ing perception system from input images. A common-sense
knowledge base is then built by a Bayesian Network based
on the image annotations, while the object interactions are
predicted by an intermediate knowledge structure called
SDG (Scene Description Graph) [50]. These object interac-
tion priors can be used as the input for image reasoning
models and applied to other visual reasoning tasks. In
addition, we should focus on teaching a machine (model)
to ”think” for visual reasoning tasks; for example, by using
XNMS (Explicit and Explicit Neural Modules) [145]. XNMS
defines several neural modules that are responsible for
specific functions (such as object location, attention transfor-
mation, etc.) based on scene graphs. XNMS separates ”high-
level” visual reasoning from ”low-level” visual perception
and forces the model to focus on how to ”think” rather than
on simple visual recognition. Since image reasoning is based
on object detection and recognition, we hope to learn the
mapping from the shared visual feature space by objects and
relations to two independent semantic embedding spaces
(objects and relations). Moreover, in order to avoid confu-
sion between these two feature spaces, the visual features of
the relationships are not transferred to the objects; instead,
only the object features are transferred [51]. Visual reasoning
based on scene graphs has its applications for reasoning
the civic issues [54], which are mainly reflected by the
relationships between the objects. Furthermore, generating
semantic layout from a scene graph is a crucial intermediate
task in the process of connecting textual descriptions to the
relevant images.

4.5 3D Scene Understanding

Similar to the 2D scene graph generated from 2D images, a
scene graph can also be constructed from 3D scenes as a 3D
scene graph, which can provide numerically accurate quan-
tification of the object relationships in 3D scenes. A 3D scene
graph succinctly describes the environments by abstracting
the objects and their relationships in 3D space in the form of
graphs. The construction of 3D scene is very helpful for the
understanding of indoor complex environment and other
tasks.

In order to construct a 3D scene graph, it is necessary to
locate the different objects, identify the elements, attributes,
and relationships between the objects in 2D images, and
then use all of this information to construct a 3D scene. In
[9] and [52], the basic process of used to generate 3D scene
graphs is similar, and there are several similar methods
(Faster RCNN or Mask RCNN) used to extract the required
information from a number of 2D images. However, there
are differences in the specific details. For example, different
methods have been proposed for constructing 3D scene
graphs using the relevant information obtained from 2D
images. Specifically, in [9], Armeni et al. tried to construct
a 3D scene graph of a building. The constructed 3D Scene
Graph consists of four layers: the building, rooms, objects,
and cameras. In each layer, there are a set of nodes with
their attributes, and edges representing the relationships
between nodes. Moreover, in [52], the 3D scene graph is

defined by Kim et al. to promote the intelligent agents to
gather the semantics within the environments, then apply
the 3D scene graph to other downstream tasks. Furthermore,
the applicability of the 3D scene graph [52] is verified
by demonstrating two major applications of VQA (Visual
Question and Answering) and task planning, achieving bet-
ter performance than the traditional 2D scene graph-based
methods. Similarly, 3DSSG (3D Semantic Scene Graphs)
[165] and 3D-DSG (3D Dynamic Scene Graphs) [17] also
studied the scene understanding of indoor 3D environ-
ments. More specifically, 3DSSG proposes a learning method
based on PointNet and GCN that moves from the scene
point cloud regression to the scene graph. This method has
achieved good performance in the 3D scene retrieval task.
3D-DSG attempts to narrow the perception gap between
robots and humans in a 3D environment by capturing the
metrics and semantics of the dynamic environment. These
works have effectively deepened people’s understanding of
3D scenes and promoted related applications.

4.6 Human-Object / Human-Human Interaction
There are many fine-grained categories of things in scenes,
which can be generally divided into humans and objects.
Therefore, some scene graph-related research works have
focused on the detection and recognition of HOI (Human-
Object Interaction) [22], [146], [147], [148], [149] and HHI
(Human-Human Interaction) [53], [166] in scenes. In these
works, the long tail of relationships remains a problem to
be solved [22], [147], while the detection and recognition
of interpersonal relationships have also been proposed [53],
[166]; these human-human relationships can be used to
further infer the visual social relationships in a scene. In this
section, we will discuss the existing methods-based scene
graph for the detection and recognition of human-object
interaction and human-human interaction.

For HOI, there are two main benchmarks: HICO-DET
[167] and HCVRD [22]. This type of visual relational HOI
dataset has a natural long-tail distribution, and also have
one-shot or zero-shot detection of HOI, which makes it very
difficult to conduct model training for most HOI methods in
order to achieve better performance. In addition, the task of
HOI relies on object detection and involves the construction
of human and object pairs with high complexity [146]. The
zero-shot learning approach is introduced to address the
challenges of scaling HOI recognition to the long tail of cate-
gories in the HOI dataset [147]. In addition, HOI recognition
is an important means of distinguishing between different
types of human actions that happened in the real world.
Most HOI methods consist of two steps: human-object pair
detection and HOI recognition [146], [168]. The detected
proposals of paired human-object regions are passed into
a multi-stream network (HO-RCNN [168] and iCAN [146])
to facilitate classification of HOIs by extracting the features
from the detected humans, objects, and the spatial relations
between them. Moreover, the structural knowledge from the
images is also beneficial for HOI recognition, with GCN
being a commonly used model for learning the structural
features. For example, GPNN (Graph Parsing Neural Net-
work) is proposed in [169] to infer the HOI graph structure
represented by an adjacency matrix and node labels. Fur-
thermore, in order to reduce the number of human-object



15

pairs, some inter activeness priors can be explored for HOI
detection; these indicate whether a human and object have
interactions with each other [146], and can be learned from
the HOI datasets, regardless of HOI category settings.

The above HOI approaches focus primarily on the detec-
tion, selection, and recognition of human-object pairs. How-
ever, they do not consider whether the approach adopted
for corresponding HOI tasks should be human-centric or
object centric. In a given scene, however, most human-object
interactions are human-centric. Therefore, some HOI works
have adopted human-centric approaches such as human-to-
object [148], [149] and human-to-human [53], [166]. Inspired
by a human-centric approach, we can first identify a human
in a scene, then select the human-object pairs of interest to
facilitate the recognition of human-object pairs using multi-
stream networks; of these, HO-RCNN [148] is a represen-
tative example. In addition, the information of HOI can be
used for action recognition. InteractNet [149] may be the
first proposed multi-task network for human-centric HOI
detection and action recognition. This network model can
achieve the task of detecting 〈human−verb−object〉 triplets
in challenging images. Moreover, it was hypothesized that
the visual features of the detected persons have powerful
cues for localizing the objects with which they intract, so
that the model learns to predict the action-specific density
over the object locations based on the visual features of the
detected persons.

Furthermore, interactions can also take place between
humans in a scene, which indicate social relationships. The
identification of social relationships in a scene requires a
deeper understanding of the scene, along with a focus on
human-to-human rather than human-to-object interaction.
Therefore, social relationship detection is a task of human-
centric HHI, and related works mainly consist of human-
human pair detection and social relationship recognition
using two network branches [53], [166]. For social relation-
ship recognition, contextual cues can be exploited by a CNN
model with attention mechanisms [53]. Adaptive Focal Loss
is designed by leveraging the ambiguous annotations so
that the models can more effectively learn the relationship
features; the goal here is to solve the problem of uncertainty
arising during the visual identification of social relation-
ships. The global visual features and mid-level details are
also beneficial for social relationship recognition, and GCN
is a commonly used model for predicting human social
relationships by integrating the global CNN features [166].

5 DATASETS FOR SCENE GRAPHS

Datasets are the basis for driving research related to deep
learning, and the research related to scene graph genera-
tion is no exception. In this section, we present a detailed
summary of the datasets commonly used in scene graph
generation tasks, so that interested readers can make their
selection accordingly.

Real-World Scene Graphs Dataset (RW-SGD) [8]. RW-
SGD is constructed by manually selecting 5,000 images
from YFCC100m [170] and Microsoft COCO datasets [171],
after which AMT (Amazon’s Mechanical Turk) is used to
produce a human-generated scene graph from these selected

images. The Final RW-SGD contains over 93,832 object in-
stances, 110,021 attribute instances, and 112,707 relationship
instances.

Visual Relationship Dataset (VRD) [19] is constructed
for the task of visual relationship prediction. VRD has 100
object classes detected from 5,000 images, and also contains
37,993 relationships. However, the distribution of the visual
relationships is impacted by the common problem of the
long tail of infrequent relationships in scene graph datasets.

Visual Genome Dataset (VGD) [20] is a large-scale
visual consisting of various components, including objects,
attributes, relationships, question-answer pairs, and so on.
In addition, another scene graph dataset (VrR-VG (Visually-
Relevant Relationships Dataset)) [29] is constructed based
on VGD.

UnRel Dataset (UnRel-D) [21] is a new challenging
dataset of unusual relations, and contains more than 1,000
images, which can be queried with 76 triplet queries.

HCVRD Dataset [22] contains 52,855 images with 1,824
object categories and 927 predicates, along with 28,323 rela-
tionship types. Similar to VRD, HCVRD also has a long-tail
distribution of infrequent relationships.

VrR-VG [29] is constructed based on Visual Genome
(VG) by filtering out the visually irrelevant relationships.
The top 1,600 objects and 500 relationships are selected from
VG by applying a hierarchical clustering algorithm on the
relationships’ word vectors. Therefore, VrR-VG is a scene
graph dataset to highlight visually relevant relationships.

The information of these datasets is summarized in
TABLE 1. This includes various attributes of datasets com-
monly used in scene graph generation tasks.

6 FUTURE RESEARCH

Scene graph generation aims at mining the relationships be-
tween objects in images or scenes and forming relationship
graphs. The generated scene graph transcends the simple
understanding of traditional object detection and recogni-
tion in visual scenes such as images or videos, and the rich
semantic relationships contained in the scene graph greatly
improve the performance of related visual tasks. However,
there is still significant scope for research to explore and
improve the accuracy of the generated relationships, the
completeness of relationship graphs, and the efficiency of
generating scene graphs ; moreover, the applications of a
scene graph in vision or other fields still need to be further
explored.

The long-tail distribution in the scene graph. In scene
graph datasets, the actually existing long-tailed distribution
of relationships directly affects the accuracy and complete-
ness of the generated scene graph, and is thus a problem
that many scholars have been trying to solve for the scene
graph generation context. For example, zero-shot, one-shot
and few-shot learning approaches [121], [147], [172] try to
address the challenges of scaling relationship recognition
to the long tail of categories in the datasets. Moreover, the
language prior information [19], [37], [38] and statistical
prior [23], [32], [39] are used to project relationships, such
that similar, rare relationships can be predicted to alleviate
the problem of the long tail of infrequent relationships.
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TABLE 1
Aggregate statistics for scene graph datasets.

Dataset Images or
Videos

Obj.
Instances

Obj.
Classes

Att.
Instances

Att.
Types

Rel.
Instances

Rel.
Types

Predicates. per
Obj. Category Pre.

RW-SGD [8] 5,000 93,832 6,745 110,021 3,743 112,707 1,310 3.3 -
VRD [19] 5,000 - 100 - - 37,993 6,672 24.25 -
VGD [20] 100k 33,877 3,843,636 - - - 40,480 - -
UnRel [21] 1,000 - - - - 76 - - -
HCVRD [22] 52,855 - 1,824 - - 256,550 28,323 10.63 927
VrR-VG [29] 58,983 282,460 1,600 - - 203,375 117 - -

Such types of prior information or analogies between sim-
ilar relationships are very helpful for detecting infrequent
relationships. In addition, [173] tries to solve the long-tail
distribution problem in the scene graph by transferring
the knowledge learned from the head relationship (rela-
tionship with a larger order of magnitude instance) to
the tail (relationship with a smaller order of magnitude
instance) by means of knowledge transfer. However, there
are large numbers of potential, unfrequent, non-focused, or
even unseen relationships in the scene that still need to be
explored. Associative reasoning through similar objects or
similar relationships across scenes may be a good research
direction to pursue, as it may solve the long-tail distribution
problem of relationships on the current scene graph dataset
to a certain extent.

Relationships detection between distant objects. Cur-
rently, a scene graph is generated based on large numbers
small-scale relationship graphs, which are abstracted from
small scenes in scene graph datasets by means of relevant
relationship prediction and reasoning models. The selection
of potential effective relationships [28], [81] and the estab-
lishment of the final relationships in the scene graph are
largely dependent on the spatial distance between objects,
such that no relationships will exist between two distant
objects. However, in the case of a large scene, there are
still more such relationships [51]. Therefore, an appropriate
proportion of large-scale images can be added to the existing
scene graph datasets, while relationships between objects
separated by a long distance can be properly considered
during scene graph generation, which will improve the
integrity of the scene graph.

Scene graph generation based on dynamic images. The
scene graph is generated based on static images in scene
graph datasets, and the object relationship prediction is also
carried out for the static objects in the images by related
reasoning models. In practice, however, it may be necessary
to predict large numbers of relationships by means of suc-
cessive actions or events; that is, relationship detection and
reasoning based on video scenes. There are very few related
research works [50], [145], and little attention has been paid
to the role played by the dynamic behaviors of objects in
the prediction and inference of the relationships. Moreover,
there are difficulties associated with predicting the object
relationships in videos, although the predicted relationships
may be more accurate. Therefore, we believe that it will be
necessary to focus on relationship prediction based on the
dynamic actions of the objects in videos.

Social relationship detection based on scene graph.
From Section 4.6, we can see that the detection of HOI

(human-object interaction) and human-human interaction
is an important application of scene graph, and that these
types of relationships can be further extended to detect
social relationships. We believe that social relationship de-
tection can be used to understand the scenes in more depth,
and is thus also a very important research direction. The
scene graph generation models based on large-scale datasets
can even mine unseen social relationships from the visual
data, which has a wider range of practical application val-
ues.

Models and methods of visual reasoning. For scene
graph generation, the mainstream methods have been de-
veloped based on object detection and recognition, visual
reference, semantic reasoning, external information intro-
duction, and so on; moreover, RNN, LSTM, and GCN mod-
els are the mainstream network models used for visual se-
mantic feature reasoning. The process of relationship recog-
nition also resembles a related mechanism utilized by hu-
mans. However, due to the limitations in the current scene
graph datasets and the limited capability of relationship
prediction models derived using these datasets, it difficult
for existing models to continuously enhance their ability
to predict relationships. Therefore, we believe that online
learning, reinforcement learning, and active learning may
be relevant methods or strategies that could be introduced
into future scene graph generation methods, as this would
enable the scene graph generation models to continuously
enhance their relationship prediction abilities by drawing
on a large number of constantly updated realistic datasets.

In general, the research in the field of scene graphs
has developed rapidly and has broad application prospects.
Scene graphs are expected to further promote the under-
standing and reasoning of higher-level visual scenes. At
present, however, scene graph-related research is not suf-
ficiently mature, meaning that it requires more effort and
exploration.

7 CONCLUSION

As a powerful tool for high-level understanding and rea-
soning analysis of scenes, scene graphs have attracted an
increasing amount of attention from researchers. However,
research into scene graphs is often cross-modal, complex,
and rapidly developing. At the same time, no compre-
hensive review of scene graph-related research could be
found at time of writing. For this reason, we conducted
a comprehensive and systematic survey of scene graph
generation. In particular, we classified existing SGGs based
on the scene graph generation method and the introduction
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of additional prior knowledge. We then conducted a com-
prehensive survey of the application of scene graph gen-
eration. In addition, we presented detailed statistics on the
datasets used in the context of the scene graph to facilitate
the selection of interested readers. Finally, we discussed in
detail the future development directions of the scene graph.
Therefore, we have reason to believe that this survey will be
very helpful for expanding readers’ understanding of scene
graph development and related research.
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