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Abstract

To reduce the human efforts in neural network design, Neural Architecture Search
(NAS) has been applied with remarkable success to various high-level vision tasks
such as classification and semantic segmentation. The underlying idea for the
NAS algorithm is straightforward, namely, to enable the network the ability to
choose among a set of operations (e.g.,convolution with different filter sizes), one
is able to find an optimal architecture that is better adapted to the problem at hand.
However, so far the success of NAS has not been enjoyed by low-level geometric
vision tasks such as stereo matching. This is partly due to the fact that state-of-
the-art deep stereo matching networks, designed by humans, are already sheer in
size. Directly applying the NAS to such massive structures is computationally
prohibitive based on the currently available mainstream computing resources. In
this paper, we propose the first end-to-end hierarchical NAS framework for deep
stereo matching by incorporating task-specific human knowledge into the neural
architecture search framework. Specifically, following the gold standard pipeline
for deep stereo matching (ie.,, feature extraction – feature volume construction
and dense matching), we optimize the architectures of the entire pipeline jointly.
Extensive experiments show that our searched network outperforms all state-of-the-
art deep stereo matching architectures and is ranked at the top 1 accuracy on KITTI
stereo 2012, 2015 and Middlebury benchmarks, as well as the top 1 on SceneFlow
dataset with a substantial improvement on the size of the network and the speed of
inference. The code is available at LEAStereo.

1 Introduction

Stereo matching attempts to find dense correspondences between a pair of rectified stereo images and
estimate a dense disparity map. Being a classic vision problem, stereo matching has been extensively
studied for almost half a century [1]. Since MC-CNN [2], a large number of deep neural network
architectures [3, 4, 5, 6] have been proposed for solving the stereo matching problem. Based on
the adopted network structures, existing deep stereo networks can be roughly classified into two
categories: I. direct regression and II. volumetric methods.
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Figure 1: Our proposed method, LEAStereo (Learning Effective Architecture Stereo), sets a new state-of-the-art
on the KITTI 2015 test dataset with much fewer parameters and much lower inference time.

Direct regression methods are based on direct regression of dense per-pixel disparity from the
input images, without taking into account the geometric constraints in stereo matching [7]. In the
majority of cases, this is achieved by employing large U-shape encoder-decoder networks with 2D
convolutions to infer the disparity map. While enjoying a fully data-driven approach, recent studies
raise some concerns about the generalization ability of the direct regression methods. For example,
the DispNet [3] fails the random dot stereo tests [8].

In contrast, the volumetric methods leverage the concept of semi-global matching [9] and build a
4D feature volume by concatenating features from each disparity-shift. To this end, the volumetric
methods often make use of two building blocks, the so-called I. feature net and II. matching net.
As the names imply, the feature net extracts features from the input images and the matching net
compute matching costs from the 4D feature volume with 3D convolutions. Different designs of
the feature net and the matching net form variants of the volumetric networks [4, 10, 11, 12, 6].
Nowadays, the volumetric methods represent the state-of-the-art in deep stereo matching and top the
leader-board across different benchmark datasets. Despite the success, designing a good architecture
for volumetric methods remains an open question in deep stereo matching.

On a separate line of research and to reduce the human efforts in designing neural networks, Neural
Architecture Search (NAS) has mounted tremendous successes in various high-level vision tasks
such as classification [13, 14, 15], object detection [16, 17], and semantic segmentation [18, 19, 20].
Connecting the dots, one may assume that marrying the two parties, ie.,employing NAS to design
a volumetric method for stereo matching, is an easy ride. Unfortunately this is not the case. In
general, NAS needs to search through a humongous set of possible architectures to pick the network
components (e.g.,the filter size of convolution in a certain layer). This demands heavy computational
load (early versions of NAS algorithms [21, 22] need thousands of GPU hours to find an architecture
on the CIFAR dataset [23]). Add to this, the nature of volumetric methods are very memory hungry.
For example, the volumetric networks in [4, 11, 8, 24] require six to eight Gigabytes of GPU memory
for training per batch! Therefore, end-to-end search of architectures for volumetric networks has been
considered prohibitive due to the explosion of computational resource demands. This is probably why,
in the only previous attempt1, Saikia et al. [25] search the architecture based on the direct regression
methods, and they only search partially three different cell structures rather than the full architecture.

In this paper, we leverage the volumetric stereo matching pipeline and allow the network to automat-
ically select the optimal structures for both the Feature Net and the Matching Net. Different from
previous NAS algorithms that only have a single encoder / encoder-decoder architecture [18, 25, 20],
our algorithm enables us to search over the structure of both networks, the size of the feature maps,
the size of the feature volume and the size of the output disparity. Unlike AutoDispNet [25] that only
searches the cell level structures, we allow the network to search for both the cell level structures and
the network level structures, e.g.,the arrangement of the cells. To sum up, we achieve the first end-to-
end hierarchical NAS framework for deep stereo matching by incorporating the geometric knowledge
into neural architecture search. We not only avoid the explosive demands of computational resources
in searching architectures, but also achieve better performances compared to naively searching an
architecture in a very large search space. Our method outperforms a large set of state-of-the-art
algorithms on various benchmarks (e.g.,topping all previous studies on the KITTI and Middlebury

1To the best of our knowledge.
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Figure 2: The pipeline of our proposed stereo matching network. Our network consists of four components:
2D Feature Net, 4D Feature Volume, 3D Matching Net, and Projection Layer. Given a pair of stereo images, the
Feature Net produces feature maps that are processed by the Matching Net to generate a 3D cost volume. The
disparity map can be projected from the cost volume with soft-argmin operation. Since the Feature Net and the
Matching Net are the only two modules that contain trainable parameters, we utilize the NAS technique to select
the optimal structures for them.

benchmarks2 ). This includes man-designed networks such as [24, 26] and the NAS work of Saikia
et al. [25], not only in accuracy but also in inference time and the size of the resulting network (as
shown in Figure 1).

2 Our Method

In this section, we present our end-to-end hierarchical NAS stereo matching network. In particular,
we have benefited from decades of human knowledge in stereo matching and previous successful
handcrafted designs in the form of priors towards architecture search and design. By leveraging
task-specific human knowledge in the search space design, we not only avoid the explosion demands
of computational resources in searching architectures for high resolution dense prediction tasks, but
also achieve better accuracy compared to naively searching an architecture in a very large search
space.

2.1 Task-specific Architecture Search Space

We recall that the deep solutions for dense prediction (e.g.,semantic segmentation, stereo matching),
usually opt for an encoder-decoder structure [18, 25, 20]. Inspired by the Auto-DeepLab [18] for
semantic segmentation, we propose a two-level hierarchical search that allows us to identify both
cell-level and network-level structures3. Directly extending ideas from semantic segmentation might
not necessarily lead to viable solutions for stereo matching. A fully data-driven U-shape encoder-
decoder network is often hard to train, even with the help of NAS [25] in regressing disparity maps.
Volumetric stereo matching methods offer faster convergence and better performance as their pipeline
makes use of inductive bias (ie.,human knowledge in network design). To be specific, volumetric
solutions first obtain a matching cost for all possible disparity levels at every pixel (based on the
concepts of 3D geometry) and then use it to generate the disparity map (e.g.,by using a soft-argmin
operation). One obvious drawback here is the overwhelming size of the resulting network. This,
makes it extremely difficult, if not impossible, to use volumetric solutions along the NAS framework.

In this work, we embed the geometric knowledge for stereo matching into our network architecture
search. Our network consists of four major parts: a 2D feature net that extracts local image features,
a 4D feature volume, a 3D matching net to compute and aggregate matching costs from concatenated
features, and a soft-argmin layer that projects the computed cost volumes to disparity maps. Since
only the feature net and the matching net involve trainable parameters, we leverage NAS technique to
search these two sub-networks. The overall structure of our network is illustrated in Figure 2. More
details about the cell and network level search are presented below.

2.1.1 Cell Level Search Space

A cell is defined as a core searchable unit in NAS. Following [27], we define a cell as a fully-connected
directed acyclic graph (DAG) with N nodes. Our cell contains two input nodes, one output node

2At the time of submitting this draft, our algorithm, LEAStereo, is ranked 1 in the KITTI 2015, and KITTI
2012 benchmark, and ranked 1 according to Bad 4.0, avgerr, rms, A95, A99 metrics on Middlebury benchmark.

3We would like to stress that our framework, in contrast to the Auto-DeepLab, searches for the full architecture
(Auto-DeepLab only searches for the architecture of the encoder).
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and three intermediate nodes. For a layer l, the output node is Cl and the input nodes are the output
node of its two preceding layers (ie.,Cl−2, Cl−1). Let O be a set of candidate operations (e.g.,2D
convolution, skip connection). During the architecture search, the functionality of an intermediate
node s(j) is described by:

s(j) =
∑
i;j

o(i,j)
(
s(i)
)
. (1)

Here, ; denotes that node i is connected to j and

o(i,j)(x) =

ν∑
r=1

exp
(
α
(i,j)
r

)
∑ν
s=1 exp

(
α
(i,j)
s

)o(i,j)r (x) , (2)

with o
(i,j)
r being the r-th operation defined between the two nodes. In effect, to identify the

operation connecting node i to node j, we make use of a mixing weight vector α(i,j) =

(α
(i,j)
1 , α

(i,j)
2 , · · · , α(i,j)

ν ) along a softmax function. At the end of the search phase, a dis-
crete architecture is picked by choosing the most likely operation between the nodes. That is,
o(i,j) = o

(i,j)
r∗ ; r∗ = argmaxr α

(i,j)
r . Unlike [27, 25], we only need to search one type of cells for

the feature and matching networks since the change of spatial resolution is handled by our network
level search. DARTS [27] has a somehow inflexible search mechanism, in the sense that nodes
Cl−2, Cl−1, Cl are required to have the same spatial and channel dimensionalities. We instead allow
the network to select different resolutions for each cell. To handle the divergence of resolutions in
neighbouring cells, we first check their resolutions and adjust them accordingly by upsampling or
downsampling if there is a mismatch.

Residual Cell. Previous studies opt for concatenating the outputs of all intermediate nodes to form
the output of a cell (e.g.,[27, 18, 25]). We refer to such a design as a direct cell. Inspired by the
residual connection in ResNet [28], we propose to also include the input of the cell in forming the
output. See Figure 3 where the residual connection cells highlighted with a red line. This allows
the network to learn residual mappings on top of direct mappings. Hereafter, we call this design the
residual cell. We empirically find that residual cells outperform the direct ones (see § 3.3).

Candidate Operation Selection. The candidate operations for the feature net and matching net
differ due to their functionalities. In particular, the feature net aims to extract distinctive local features
for comparing pixel-wise similarities. We empirically observe that removing two commonly used
operations in DARTS, namely 1. dilated separable convolutions and 2. the pooling layers does not
hurt the performance. Thus, the set of candidates operators for the feature net includesOF = { “3×3
2D convolution”, “skip connection”}. Similarly, we find out that removing some of the commonly
used operations from the candidate set for the matching net will not hurt the design. As such, we only
include the following operations for the matching net, OM = { “3× 3× 3 3D convolution”, “skip
connection”}. We will shortly see an ablation study regarding this (see § 3.3).

2.1.2 Network Level Search Space

We define the network level search space as the arrangement of cells, which controls the variations in
the feature dimensionality and information flow between cells. Drawing inspirations from [18], we
aim to find an optimal path within a pre-defined L-layer trellis as shown in Figure 3. We associated a
scalar with each gray arrow in that trellis. We use β to represent the set of this scalar. Considering the
number of filters in each cell, we follow the common practice of doubling the number when halving
the height and width of the feature tensor.

In the network level search space, we have two hyper-parameters to set: I. the smallest spatial
resolution and II. the number of layers L. Empirically, we observe that setting the smallest spatial
resolution to 1/24 of the input images work across a broad range of benchmarks and hence our choice
in here. Based on this, we propose a three-level trellis with downsampling rates of {3, 2, 2, 2}, leading
to the smallest feature map to be 1/24 of the input size (see Figure 3). In comparison to {2, 2, 2, 2, 2},
the downsampling to 1/3 will remove the need of upsampling twice and we empirically observed
similar performance. At the beginning of the feature net, we have a three-layer “stem” structure,
the first layer of it is a 3× 3 convolution layer with stride of three, followed by two layers of 3× 3
convolution with stride of one.
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Figure 3: The proposed search space. We illustrate our cell level search space on the left and our network
level search space on the right. The red dash line on the left represents the proposed residual connection. We set
LF = 6 for Feature Net and LM = 12 for Matching Net.

Turning our attention to the the number of layers L, we have empirically observed that choosing
LF = 6 for the feature net and LM = 12 for the matching net provides a good balance between the
computational load and performance of the network. This is interestingly much smaller than some
recent developments in hand-crafting deep stereo matching networks. For example, GA-Net [24]
uses 33 convolutional layers with an hourglass structure to extract features.

Similar to finding the best operation between the nodes, we will use a set of search parameters β to
search over the trellis in order to find a path in it that minimizes the loss. As shown in Fig 3, each cell
in a level of the trellis can receive inputs from the preceding cell in the same level, one level below
and one level above (if any of the latter two exists).

2.2 Loss Function and Optimization

Since our network can be searched and trained in an end-to-end manner, we directly apply supervisions
on the output disparity maps, allowing the Feature Net and the Matching Net to be jointly searched.
We use the smooth `1 loss as our training loss function as it is considered to be robust to disparity
discontinuities and outliers. Given the ground truth disparity dgt, the loss function is defined as:

L = `(dpred − dgt), where `(x) =
{

0.5x2, |x| < 1,
|x| − 0.5, otherwise.

(3)

After continuous relaxation, we can optimize the weight w of the network and the architecture param-
eters α,β through bi-level optimization. We parameterize the cell structure and the network structure
with α and β respectively. To speed up the search process, we use the first-order approximation [18].

To avoid overfitting, we use two disjoint training sets trainI and trainII for w and α,β optimization
respectively. We do alternating optimization for w and α,β:

• Update network weights w by∇wL(w,α,β) on trainI
• Update architecture parameters α,β by∇α,βL(w,α,β) on trainII

When the optimization convergence, we decode the discrete cell structures by retaining the top-2
strongest operations from all non-zero operations for each node, and the discrete network structures
by finding a path with maximum probability [18].

3 Experiments
In this section, we adopt SceneFlow dataset [3] as the source dataset to analyze our architecture search
outcome. We then conduct the architecture evaluation on KITTI 2012 [29], KITTI 2015 [30] and
Middlebury 2014 [31] benchmarks by inheriting the searched architecture from SceneFlow dataset.
In our ablation study, we analyze the effect of changing search space as well as different search
strategies.

3.1 Architecture Search

We conduct full architecture search on SceneFlow dataset [3]. It contains 35,454 training and 4370
testing synthetic images with a typical image dimension of 540× 960. We use the “finalpass” version
as it is more realistic. We randomly select 20,000 image pairs from the training set as our search-
training-set, and another 1,000 image pairs from the training set are used as the search-validation-set
following [18].
Implementation: We implement our LEAStereo network in Pytorch. Random crop with size
192×384 is the only data argumentation technique being used in this work. We search the architecture
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Figure 4: The searched architecture. The top two graphs are the searched cell structures for the Feature Net
and Matching Net. The bottom are the searched network level structures for both networks. The yellow dots
present the pre-defined “stem” layers and the blue dots denote the searchable cells.

for a total of 10 epochs: the first three epochs to initiate the weight w of the super-network and avoid
bad local minima outcome; the rest epochs to update the architecture parameters α, β. We use SGD
optimizer with momentum 0.9, cosine learning rate that decays from 0.025 to 0.001, and weight
decay 0.0003. The entire architecture search optimization takes about 10 GPU days on an NVIDIA
V100 GPU.

The architecture found by our algorithm is shown in Figure 4. Noting that we only perform the
architecture search once on the SceneFlow dataset and fine-tuned the weights on each benchmark
separately.

3.2 Benchmark Evaluation

SceneFlow dataset We evaluate our LEAStereo network on SceneFlow [3] test set with 192
disparity level. We use average end point errors (EPE) and bad pixel ratio with 1 pixel threshold
(bad 1.0) as our benchmark metrics. In Table 1, we can observe that LEAStereo achieves the best
performance using only near one third of parameters in comparison to the SOTA hand-crafted methods
(e.g., [6]). Furthermore, the previous SOTA NAS-based method AutoDispNet [25] has 20× more
parameters than our architecture. We show some of the qualitative results in Figure 7.

Table 1: Quantitative results on Scene Flow dataset. Our method achieves state-of-the-art performance with
only a fraction of parameters. The parentheses indicate the test set is used for hyperparameters tuning.

Methods Params [M] EPE [px] bad 1.0 [%] Runtime [s]

GCNet [4] 3.5 1.84 15.6 0.9
iResNet[5] 43.34 2.45 9.28 0.2
PSMNet [11] 5.22 1.09 12.1 0.4
GANet-deep [6] 6.58 0.78 8.7 1.9
AANet [26] 3.9 0.87 9.3 0.07
AutoDispNet [25] 37 (1.51) - 0.34

LEAStereo 1.81 0.78 7.82 0.3

KITTI benchmarks As shown in Table 2 and the leader board, our LEAStereo achieves top 1 rank
among other human designed architectures on KITTI 2012 and KITTI 2015 benchmarks. Figure 5
provides some visualizations from the testsets.
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Left Image AutoDispNet-CSS [25] GANet-deep [6] LEAStereo

Figure 5: Qualitative results on KITTI 2012 and KITTI 2015 benchmarks.

Middlebury 2014 Middlebury 2014 is often considered to be the most challenging dataset for deep
stereo networks due to restricted number of training samples and also the high resolution imagery
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Table 2: Quantitative results on the KITTI 2012 and 2015 benchmark. Bold indicates the best.

KITTI 2012 KITTI 2015

Methods bad 2.0 bad 3.0 Refl 3.0 Avg All FG Avg All FG Avg All
noc [%] noc [%] noc [%] [px] Non Occ[%] All Areas[%]

GCNet [4] 2.71 1.77 10.80 0.7 5.58 2.61 6.16 2.87
PSMNet [11] 2.44 1.49 8.36 0.6 4.31 2.14 4.62 2.32
GANet-deep [6] 1.89 1.19 6.22 0.5 3.39 1.84 3.91 2.03
DispNetC [3] 7.38 4.11 16.04 1.0 3.72 4.05 4.41 4.34
AANet [26] 2.90 1.91 10.51 0.6 1.80 2.32 1.99 2.55
AutoDispNet-CSS [25] 2.54 1.70 5.69 0.5 2.98 2.00 3.37 2.18

LEAStereo 1.90 1.13 5.35 0.5 2.65 1.51 2.91 1.65

with many thin objects. The full resolution of Middlebury is up to 3000× 2000 with 800 disparity
levels which is prohibitive for most deep stereo methods. This has forced several SOTA [11, 32] to
operate on quarter-resolution images where details can be lost. In contrast, the compactness of our
searched architecture compactness allows us to use images of size 1500× 1000 with 432 disparity
levels. In Table 3, we report the latest benchmark of volumetric based stereo matching method [11]
and direct regression approaches [5, 26] for comparisons. Our proposed LEAStereo achieves the
state-of-the-art rank on various metrics (e.g.,bad 4.0, all) among more than 120 stereo methods from
the leader board. We also note that our network has better performance on large error thresholds,
which might because of the downsampling operations prohibit the network to learn sub-pixel accuracy
or the loss function that does not encourage sub-pixel accuracy.

Table 3: Quantitative results on the Middlebury 2014 Benchmark. Bold indicates the best. The red number
on the top right of each number indicates the actual ranking on the benchmark.

Methods bad 2.0 [%] bad 4.0 [%] Ave Err [px] RMSE [px] A90 [px] A95 [px]
nonocc all nonocc all nonocc all nonocc all nonocc all nonocc all

PSMNet [11] 42.1108 47.2104 23.597 29.294 6.6869 8.7843 19.450 23.322 17.077 22.851 31.365 43.432

iResNet [5] 22.962 29.561 12.655 18.549 3.3130 4.677 11.38 13.96 6.6149 10.624 12.537 20.77

AANet+ [26] 15.444 22.040 10.845 16.442 6.3766 9.7749 23.573 29.442 7.5556 29.358 48.880 76.163

HSM [33] 10.226 16.519 4.8317 9.688 2.072 3.442 10.34 13.43 2.1220 4.265 4.326 17.64

LEAStereo 7.1510 12.15 2.751 6.331 1.431 2.891 8.111 13.75 1.688 2.621 2.651 6.351

Left image HSM [33] HSM [33] bad 4.0 LEAStereo LEAStereo bad 4.0

Figure 6: Qualitative results on Middlebury 2014 Benchmark.

3.3 Ablation Study
In this part, we perform ablation studies using the SceneFlow dataset [3] to justify “hyper-parameters”
of our algorithm. In particular, we look into the candidate operations O, differences between the
residual and the direct cells, joint-search vs. separate-search of the Feature Net and the Matching
Net, and functionality analysis for each sub-net. We also provide a head-to-head comparison to
AutoDispNet [25].

Candidate Operations Here we evaluate two sets of candidate operations Olarge and Oours. The
Olarge consists of 8 operations including various types of convolution filters, pooling and connection
mechanisms that are commonly used in [27, 18, 25]4. TheOours as described in § 2.1.1 only contains
3× 3 convolution, skip connection and zero connection. For the Matching Net, we simply use the

4Namely, Olarge contains 3 × 3 and 5 × 5 depth-wise separable convolutions, 3 × 3 and 3 × 3 dilated
separable convolutions with dilation factor 2, skip connection, 3× 3 average pooling, 3× 3 max pooling and
zero connection.
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Table 4: Ablation Studies of different searching strategies. The input resolution is 576× 960, and EPE is
measured on total SceneFlow test set.

Architecture Variant Achieved Network
Olarge Oours Sepa. Join. Direct Residual Params FLOPS EPE
√ √ √

0.68M 682.8G 1.55px√ √ √
2.00M 782.4G 0.86px√ √ √
1.52M 538.9G 0.91px√ √ √
1.81M 782.2G 0.78px

Left image GT Feature Net result Full Network result

Figure 7: Functionality analysis for the Feature Net and the Matching Net. By using the learned features
from the Feature Net directly, we already achieve reasonably good results as shown in the third sub-figure. After
applying the Matching Net, we could further improve the results significantly as evidenced by the gap between
the third and fourth sub-figures.

3D variants of these operations. As shown in the first two rows of Table 4, larger set of operations
pool Olarge leads to a searched architecture with a much lower number of parameters but poor EPE
performance when compared to Oours. The reason is that the algorithm favors skip connections in its
design, leading to a low-capacity architecture. Similar observations, albeit in another context, are
reported in [34].

Joint-search vs. Separate-search To analyze the effectiveness and efficiency of joint-search vs.
separate-search, we report their performances on SceneFlow dataset withO and connection type fixed.
From the metrics of row 2 and 4 in Table 4, we observe that joint-search outperforms separate-search
by an improved margin of 9.30% for EPE and 10.50% reduction on the number of parameters. We
conjecture that the joint-search increases the capacity and compatibility for both Feature Net and
Matching Net.

Residual cell vs. Direct cell We then study the differences between our proposed residual cell and
direct cell. As shown in the last two rows of Table 4, using residual cell slightly generates more
parameters and FLOPs but increase the performance by 14.29%.

Functionality analysis for each sub-net The Feature Net and the Matching Net own different
roles in stereo matching. The Feature Net is designed to extract distinctive features from stereo
pairs while the Matching Net is to compute matching costs from these features. To analyze and
reflect the actual behaviour of each searched sub-net, we use the features from the Feature Net to
directly compute a cost volume with dot products [2] and project it to a disparity map with the
Winner-Takes-All (WTA) strategy. As shown in Figure 7, this strategy already achieves a reasonably
good result in correctly estimating disparity for most objects, which demonstrates that our Feature
Net is learning discriminative features for stereo matching. The difference between the third and
fourth sub-figures (before and after the Matching Net) proves the contribution of the Matching Net in
computing and aggregating the matching costs to achieve much better results.

3.4 Discussion
LEAStereo vs. AutoDispNet AutoDispNet [25] has a very different network design philosophy
than ours. It is a large U-Net-like architecture and tries to directly regress disparity maps from input
images in pixel space. In contrast, our design benefits from task-specific physics and inductive bias,
ie.,the gold standard pipeline for deep stereo matching and the refine search space, thus achieves full
architecture search within current physical constraints. Table 5 provides a head-to-head comparison on
KITTI Benchmark. It is worth noting that our method is 32.12% better than AutoDispNet-CSS [25]
with only 1.81M parameters (which is 1.7% of the parameters required by AutoDispNet-CSS!)

Hints from the found architecture There are several hints from the found architecture: 1. The
feature net does not need to be too deep to achieve good performance; 2. Larger feature volumes
lead to better performance (1/3 is better than 1/6); 3. A cost volume of 1/6 resolution seems
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Table 5: LEAStereo vs. AutoDispNet

Methods Search Level Params KITTI 2012 KITTI 2015 Runtime

AutoDispNet-CSS Cell 111M 1.70% 2.18% 0.9 s
LEAStereo Full Network 1.8M 1.13% 1.65% 0.3 s

proper for good performance; 4. Multi-scale fusion seems important for computing matching costs
(ie.,using a DAG to fuse multi-scale information). Note that the fourth hint has also been exploited by
AANet [26] which builds multiple multi-scale cost volumes and regularize them with multi-scale
fusion scheme. Our design is tailored for the task of stereo matching and may not be considered as a
domain agnostic solution for a different problem. For different domains, better task-dependent NAS
mechanisms are still a suitable solution to efficiently incorporate inductive bias and physics of the
problem into the search space.

4 Related Work
Deep Stereo Matching MC-CNN [2] is the first deep learning based stereo matching method. It
replaces handcrafted features with learned features and achieves better performance. DispNet [3]
is the first end-to-end deep stereo matching approach. It tries to directly regress the disparity maps
from stereo pairs. The overall architecture is a large U-shape encoder-decoder network with skip
connections. Since it does not leverage on pre-acquired human knowledge in stereo matching, this
network is totally data-driven, and requires large training data and often hard to train. GC-Net [4]
used a 4D feature volume to mimic the first step of conventional stereo matching pipeline and a
soft-argmin process to mimic the second step. By encoding such human knowledge in network
design, training becomes easier while maintaining high accuracies. Similar to our work, GC-Net also
consists of two sub-networks to predict disparities. GA-Net [33] proposes a semi-global aggregation
layer and a local guided aggregation layer to capture the local and the whole-image cost dependencies
respectively. Generally speaking and as alluded to earlier, designing a good structure for stereo
matching is very difficult, despite considerable effort put in by the vision community.

Neural Architecture Search for Dense Predictions Rapid progress on NAS for image classi-
fication or object detection has been witnessed as of late. In contrast, only a handful of studies
target the problem of dense predictions such as scene parsing, and semantic segmentation. Pioneer
works [35, 36] propose a super-net that embed a large number of architectures in a grid arrangement
and adopt them for the task of semantic segmentation. To deal with the explosion of computational
demands in dense prediction, Chen et al. [37] employ a handcrafted backbone and only search the de-
coder architecture. Rather than directly searching architectures on large-scale dense prediction tasks,
they design a small scale proxy task to evaluate the searching results. Nekrasov et al. [38] focus on the
compactness of a network and utilized a small-scale network backbone with over-parameterised aux-
iliary searchable cells on top of it. Similarly, Zhang et al.[19] penalized the computational demands
in search operations, allowing the network to search an optimized architecture with customized
constraints. Auto-Deeplab [18] proposes a hierarchical search space for semantic segmentation,
allowing the network to self-select spatial resolution for encoders. FasterSeg [20] leverages on the
idea of [19] and [18], and introduces multi-resolution branches to the search space to identify an
effective semantic segmentation network. AutoDispNet [25] applies NAS to disparity estimation by
searching cell structures for a large-scale U-shape encoder-decoder structure.

5 Conclusion

In this paper, we proposed the first end-to-end hierarchical NAS framework for deep stereo matching,
which incorporates task-specific human knowledge into the architecture search framework. Our
search framework tailors the search space and follows the feature net-feature volume-matching net
pipeline, whereas we could optimize the architecture of the entire pipeline jointly. Our searched
network outperforms all state-of-the-art deep stereo matching architectures (handcrafted and NAS
searched) and is ranked at the top 1 accuracy on KITTI stereo 2012, 2015 and Middlebury benchmarks
while showing substantial improvement on the network size and inference speed. In the future, we
plan to extend our search framework to other dense matching tasks such as optical flow estimation
and multi-view stereo.
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Broader Impact

The task of stereo matching has been studied for over half a century and numerous methods have
been proposed. From traditional methods to deep learning based methods, people keep setting a
new state-of-the-art through these years. Nowadays, deep learning based methods becomes more
popular than traditional methods since deep methods are more accurate and faster. However, finding
a better architecture for stereo matching networks remains a hot topic recently. Rather than designing
a handcrafted architecture with trial and error, we propose to allow the network to learn an good
architecture by itself in an end-to-end manner. Our method reduces more than 2/3 of searching time
than previous method [25] and has much better performance, thus saves lots of energy consumption
and good for our planet by reducing massive carbon footprints.

In addition, our proposed search framework is relatively general and not limited to the specific task of
stereo matching. It can be well extended to other dense matching tasks such as optical flow estimation
and multi-view stereo.

Acknowledgments and Disclosure of Funding

Yuchao Dai’s research was supported in part by Natural Science Foundation of China (61871325,
61671387) and National Key Research and Development Program of China under Grant
2018AAA0102803. Hongdong Li’s research was supported in part by the ARC Centre of Ex-
cellence for Robotics Vision (CE140100016) AND ARC-Discovery (DP 190102261), ARC-LIEF
(190100080) grants. Zongyuan Ge and Xuelian Cheng were supported by Airdoc Research Australia
Centre Funding. Zongyuan Ge was also supported by Monash-NVIDIA joint Research Centre.

References
[1] D. Marr and T. Poggio. Cooperative computation of stereo disparity. Science, 1976.

[2] Jure Žbontar and Yann LeCun. Stereo matching by training a convolutional neural network to compare
image patches. J. Mach. Learn. Res., 17(1):2287–2318, January 2016.

[3] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A large dataset to train
convolutional networks for disparity, optical flow, and scene flow estimation. In Proc. IEEE Conf. Comp.
Vis. Patt. Recogn. (CVPR), June 2016.

[4] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy, Abraham Bachrach,
and Adam Bry. End-to-end learning of geometry and context for deep stereo regression. In Proc. IEEE Int.
Conf. Comp. Vis. (ICCV), pages 66–75, 2017.

[5] Zhengfa Liang, Yiliu Feng, Yulan Guo, Hengzhu Liu, Wei Chen, Linbo Qiao, Li Zhou, and Jianfeng Zhang.
Learning for disparity estimation through feature constancy. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
(CVPR), 2018.

[6] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip HS Torr. Ga-net: Guided aggregation net for
end-to-end stereo matching. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn. (CVPR), pages 185–194, 2019.

[7] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press,
ISBN: 0521540518, second edition, 2004.

[8] Yiran Zhong, Hongdong Li, and Yuchao Dai. Open-world stereo video matching with deep RNN. In Proc.
Eur. Conf. Comp. Vis. (ECCV), September 2018.

[9] Heiko Hirschmuller. Stereo processing by semiglobal matching and mutual information. IEEE Trans.
Pattern Anal. Mach. Intell., 30(2):328–341, 2007.

[10] Yiran Zhong, Yuchao Dai, and Hongdong Li. Self-supervised learning for stereo matching with self-
improving ability. In arXiv:1709.00930, 2017.

[11] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching network. In Proc. IEEE Conf. Comp. Vis.
Patt. Recogn. (CVPR), pages 5410–5418, 2018.

[12] Sameh Khamis, Sean Fanello, Christoph Rhemann, Adarsh Kowdle, Julien Valentin, and Shahram Izadi.
Stereonet: Guided hierarchical refinement for real-time edge-aware depth prediction. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 573–590, 2018.

[13] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task and
hardware. In International Conference on Learning Representations, 2019.

10



[14] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter
Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn. (CVPR), pages 10734–10742,
2019.

[15] Jiemin Fang, Yuzhu Sun, Qian Zhang, Yuan Li, Wenyu Liu, and Xinggang Wang. Densely connected
search space for more flexible neural architecture search. arXiv preprint arXiv:1906.09607, 2019.

[16] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object detection. arXiv
preprint arXiv:1911.09070, 2019.

[17] Junran Peng, Ming Sun, ZHAO-XIANG ZHANG, Tieniu Tan, and Junjie Yan. Efficient neural architecture
transformation search in channel-level for object detection. In Advances in Neural Information Processing
Systems, pages 14290–14299, 2019.

[18] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei.
Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation. In Proc. IEEE
Conf. Comp. Vis. Patt. Recogn. (CVPR), pages 82–92, 2019.

[19] Yiheng Zhang, Zhaofan Qiu, Jingen Liu, Ting Yao, Dong Liu, and Tao Mei. Customizable architecture
search for semantic segmentation. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn. (CVPR), pages 11641–
11650, 2019.

[20] Wuyang Chen, Xinyu Gong, Xianming Liu, Qian Zhang, Yuan Li, and Zhangyang Wang. Fasterseg:
Searching for faster real-time semantic segmentation. International Conference on Learning Representation,
2020.

[21] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

[22] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for
scalable image recognition. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn. (CVPR), pages 8697–8710,
2018.

[23] Krizhevsky Alex. Learning multiple layers of features from tiny images. In Tech Report, 2009.

[24] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip HS Torr. GA-Net: Guided aggregation net for
end-to-end stereo matching. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn. (CVPR), pages 185–194, 2019.

[25] Tonmoy Saikia, Yassine Marrakchi, Arber Zela, Frank Hutter, and Thomas Brox. Autodispnet: Improving
disparity estimation with automl. In Proc. IEEE Int. Conf. Comp. Vis. (ICCV), pages 1812–1823, 2019.

[26] Haofei Xu and Juyong Zhang. Aanet: Adaptive aggregation network for efficient stereo matching. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[27] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proc. IEEE Conf. Comp. Vis. Patt. Recogn. (CVPR), pages 770–778, 2016.

[29] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for Autonomous Driving? The KITTI
vision benchmark suite. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn. (CVPR), 2012.

[30] Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In Proc. IEEE Conf. Comp.
Vis. Patt. Recogn. (CVPR), 2015.

[31] Daniel Scharstein, Heiko Hirschmüller, York Kitajima, Greg Krathwohl, Nera Nešić, Xi Wang, and Porter
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