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Deep learning has made major breakthroughs and progress in many fields. This is due to the powerful
automatic representation capabilities of deep learning. It has been proved that the design of the network
architecture is crucial to the feature representation of data and the final performance. In order to obtain a good
feature representation of data, the researchers designed various complex network architectures. However, the
design of the network architecture relies heavily on the researchers’ prior knowledge and experience. Due to
the limitations of human’s inherent knowledge, it is difficult for people to jump out of the original thinking
paradigm and design an optimal model. Therefore, a natural idea is to reduce human intervention as much as
possible and let the algorithm automatically design the architecture of the network. Thus going further to the
strong intelligence.

In recent years, a large number of related algorithms for Neural Architecture Search (NAS) have emerged.
They have made various improvements to the NAS algorithm, and the related research work is complicated
and rich. In order to reduce the difficulty for beginners to conduct NAS-related research, a comprehensive and
systematic survey on the NAS is essential. Previously related surveys began to classify existing work mainly
from the basic components of NAS: search space, search strategy and evaluation strategy. This classification
method is more intuitive, but it is difficult for readers to grasp the challenges and the landmark work in the
middle. Therefore, in this survey, we provide a new perspective: starting with an overview of the characteristics
of the earliest NAS algorithms, summarizing the problems in these early NAS algorithms, and then giving
solutions for subsequent related research work. In addition, we conducted a detailed and comprehensive
analysis, comparison and summary of these works. Finally, we give possible future research directions.
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1 INTRODUCTION
Dlearning has already demonstrated strong learning capabilities in many fields: machine translation
[1–3], image recognition [4, 6, 7] and object detection [8–10]. This is mainly due to the powerful
automatic feature extraction capabilities of deep learning for unstructured data. Deep learning has
transformed the traditional way of manually designing features [13, 14] into automatic extraction
[4, 29, 30]. This allows researchers to focus on the design of neural architecture [11, 12, 19].
However, the design of the neural architecture relies heavily on the researchers’ prior knowledge
and experience, which makes it difficult for beginners to make reasonable modifications to the
network architecture according to their actual needs. In addition, human’s existing prior knowledge
and fixed thinking paradigm are likely to limit the discovery of a new network architecture to a
certain extent.
As a result, Neural architecture search (NAS) came into being. NAS aims to design a network

architecture with the best performance using limited computing resources in an automatedwaywith
as little human intervention as possible. The work of NAS-RL [11] and MetaQNN [12] is considered
a pioneering work of NAS. The network architecture they obtained using reinforcement learning (RL)
methods reached the state-of-the-art classification accuracy on the image classification task. This
shows that the idea of automated network architecture design is feasible. Subsequently, the work of
Large-scale Evolution [15] once again verified the feasibility of this idea, which uses evolutionary
learning to achieve similar results. However, they have consumed hundreds of GPU days or even
more computing resources in their respective methods. This huge amount of calculation is almost
catastrophic for ordinary researchers. Therefore, a lot of work has emerged on how to reduce the
amount of calculation and accelerate the search of the network architecture [18–20, 48, 49, 52, 84,
105]. With the improvement of NAS search efficiency, NAS is also quickly applied in the fields of
object detection [65, 75, 111, 118], semantic segmentation [63, 64, 120], adversarial learning [53],
architectural scaling [114, 122, 124], multi-objective optimization [39, 115, 125], platform-aware
[28, 34, 103, 117], data augmentation [121, 123] and so on. In addition, there is some work to consider
how to strike a balance between performance and efficiency [116, 119]. Although NAS-related
research has been so abundant, it is still difficult to compare and reproduce NAS methods [127].
Because different NAS methods have many differences in search space, hyperparameters, tricks,
etc., some work is also devoted to providing a unified evaluation platform for popular NAS methods
[78, 126].

With the deepening and rapid development of NAS-related research, some methods previously
accepted by researchers have been proved to be imperfect by new research. And soon there was
an improved solution. For example, early NAS trained each candidate network architecture from
scratch during the architecture search phase, leading to a surge in computation [11, 12]. ENAS [19]
proposes to accelerate the process of architecture search by using a parameter sharing strategy. This
strategy avoids training each subnet from scratch, but forces all subnets to share weights, thereby
greatly reducing the time to obtain the best performing subnet from a large number of candidate
networks. Due to the superiority of ENAS in search efficiency, the weight sharing strategy was
quickly recognized by a large number of researchers [23, 53, 54]. However, soon new research found
that the widely accepted weight sharing strategy is likely to lead to inaccurate ranking of candidate
architectures [24]. This will make it difficult for the NAS to select the optimal network architecture
from a large number of candidate architectures, thereby further deteriorating the performance of
the finally searched network architecture. Shortly afterwards, DNA [21] modularized the large
search space of NAS into blocks, so that the candidate architecture was fully trained to reduce the
representation shift problem caused by the weight sharing. In addition, GDAS-NSAS [25] proposes a
Novelty Search based Architecture Selection (NSAS) loss function to solve the problem of multi-model

ACM Comput. Surv., Vol. 37, No. 4, Article 111. Publication date: August 2020.



A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions 111:3

Fig. 1. The general framework of NAS. NAS generally starts with a set of predefined operation sets, and uses
search strategies to obtain a large number of candidate network architectures based on the search space
formed by the operation sets. The candidate network architecture is trained and ranked. Then, the search
strategy is adjusted according to the ranking information of the candidate network architecture, thereby
further obtaining a set of new candidate network architectures. When the search is terminated, the most
promising network architecture is used as the final optimal network architecture, which is used for the final
performance evaluation.

forgetting (when weight sharing is used to sequentially train a new network architecture, the
performance of the previous network architecture is reduced) caused by weight sharing during the
super network training process.
Similar research clues are very common in the rapidly developing NAS research field, so a

comprehensive and systematic survey based on challenges and solutions is very useful for NAS
research. Previous related surveys classified existing workmainly according to the basic components
of NAS: search space, search strategy and evaluation strategy [26, 27]. This classification method is
more intuitive, but it is not conducive to readers to capture the research clues. Therefore, in this
survey, we will first summarize the characteristics and corresponding challenges of the early NAS
methods. Based on these challenges, we have summarized and categorized existing research in
order to show readers a comprehensive and systematic overview based on challenges and solutions.
Finally, we will compare the performance of existing research work, and give possible future
research directions and some thoughts.

2 CHARACTERISTICS OF EARLY NAS
In this section, we summarize the general framework of early NAS methods, their characteristics,
and the challenges facing subsequent NAS research.
We summarize the general framework of NAS as shown in Fig.1. NAS usually starts with a

set of predefined operation sets and uses a search strategy to obtain a large number of candidate
network architectures based on the search space formed by these operation sets. Then train the
candidate network architecture on the training set and rank them according to their accuracy
on the validation set. The ranking information of the candidate network architecture is used as
feedback information to adjust the search strategy to further obtain a set of new candidate network
architectures. When the termination condition is reached, the search will be terminated to select
the best network architecture. The network architecture performs performance evaluation on the
test set.
Early NAS also roughly followed the above process [11, 12, 15, 16]. The idea of NAS-RL [11]

comes from such a simple observation that the architecture of a neural network can be described
as a variable-length string. Therefore, a very natural idea is that we can use RNN as a controller to
generate such a string, and then use RL to optimize the controller, and finally get a satisfactory
network architecture. MetaQNN [12] regards the selection process of the network architecture
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as a Markov decision process, and uses Q-learning to record rewards, so as to obtain the optimal
network architecture. Large-scale Evolution [15] aims to automatically learn an optimal network
architecture using evolutionary algorithms (EA) while reducing human intervention as much as
possible. It uses the simplest network structure to initialize a large population, and obtains the best
network architecture by reproduce, mutating, and selecting the population. GeNet [16] also used
EA, it proposes a new neural network architecture coding scheme, which represents the network
architecture as a fixed-length binary string. It randomly initializes a group of individuals, uses a
predefined set of genetic operations to modify the binary string to generate new individuals, and
finally selects competitive individuals as the final network architecture.
These early NAS made the automatically generated network architecture a reality. In order to

understand the reasons restricting the widespread use of early NAS, we summarized the common
characteristics existing in early NAS work from the perspective of a latecomer as follows:

• Global search strategy. It requires the NAS to use a search strategy to search all necessary
components of the network architecture. This means that NAS needs to find an optimal
network architecture within a huge search space. Obviously, the larger the search space, the
higher the corresponding search cost.

• Discrete search space. It regards the differences between different network architectures
as a limited set of basic operations, that is, by discretely modifying an operation to change
the network architecture. This means that we cannot use the gradient strategy to quickly
adjust the network architecture.

• Search from scratch. The model is built from scratch until the final network architecture is
generated. Obviously, this method wastes the existing network architecture design experience
and cannot utilize the existing excellent network architecture.

• Fully trained. It requires training each candidate network architecture from scratch to
convergence. We know that there is a similar network structure between the subsequent
network architecture and the previous network architecture, as well as between the network
architectures at the same stage. Therefore, training each candidate network architecture from
scratch obviously does not fully utilize this relationship. In addition, we only need to obtain
the relative performance ranking of the candidate architecture. Whether it is necessary to
train each candidate architecture to convergence is also a question worth considering.

The search space is determined by the predefined operation set and the hyperparameters of
the network architecture (for example: an architectural template, connection method, the number
of channels of the convolutional layer used for feature extraction in the initial stage, etc.). These
parameters define which network architectures can be searched by the NAS. Fig.2 shows examples
of two common global search spaces with a chain structure in early NAS work. oi is an operation in
the candidate operation set and the i-th operation in the chain structure. The feature map generated
by oi is represented as z(i). The input goes through a series of operations to get the final output.
Fig.2 (left): The simplest example of a chain structure MetaQNN [12]. At this point, for any feature
map z(i), there is only one input node z(i−1), and

z(i) = oi {(z(i−1))}. (1)

Fig.2 (right): The example after adding skip connections [11, 15, 16]. At this time, there can be
multiple inputs for any feature map z(i), and

z(i) = o(i)
({
z(i−1)

}
⊙
{
z(k ) |αk,i = 1,k < i − 1

})
, (2)

where ⊙ can be a sum operation or a merge operation. For example, ⊙ is a merge operation in
NAS-RL [11], and ⊙ is a sum operation in GeNet [16]. It should be pointed out that NASNet [31]
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Fig. 2. Two common global search spaces with a chain structure in early NAS work. Left: The simplest example
of a chain structure. Right: The example after adding skip connections. oi is an operation in the candidate set
of operations and the i-th operation in the chain structure. The feature map generated by oi is represented as
z(i). The input goes through a series of operations to get the final output.

considered these two operations in the experiment, but the experimental results show that the sum
operation is better than the merge operation. Therefore, since then, a lot of work has taken the
summation operation as the connection method of the feature map obtained between different
branch operations [17, 36, 37]. Similar to the chain structure, Mnasnet [28] suggests searching for a
network architecture composed of multiple segments connected in sequence, each segment having
its own repeating structure.

In addition, in the early NAS, searching from scratch was a commonly adopted search strategy.
NAS-RL [11] expresses the network architecture as a string of variable length, which is generated
by RNN as a controller. Then generate the corresponding network architecture according to the
string, and then use reinforcement learning as the corresponding search strategy to adjust the
network architecture search. MetaQNN [12] considers training an agent to sequentially select the
layer structure of the neural network on the search space constructed by the predefined operation
set. It regards the layer selection process as a Markov decision process, and uses Q-learning as
a search strategy to adjust the agent’s selection behavior. Similar to NAS-RL [11], GeNet [16]
also adopts the idea of encoding the network structure. The difference is that in GeNet [16], the
network architecture representation is regarded as a string of fixed-length binary codes. This binary
code is regarded as the DNA of the network architecture. The population is initialized randomly,
and then use evolutionary learning to reproduce, mutate and select the population, and iterate to
select the best individual. It can be seen from the above analysis that these methods do not use the
existing excellent artificially designed network architecture, but search the network architecture
from scratch in their respective methods. More simply, Large-scale Evolution [15] only uses a
single-layer model without convolution as the starting point for individual evolution. Then use
evolutionary learning methods to evolve the population, and then select the most competitive
individuals in the population. We take Large-scale Evolution [15] as an example and show an
example of searching from scratch in Fig.3.
The common characteristics of these early NAS work are also the collective challenges faced

by the automatic generation of network architecture. Based on the above challenges, we will
summarize the solutions in the subsequent NAS-related research work in Section 3.
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Fig. 3. Take Large-scale Evolution [15] as an example, starting from the simplest network architecture to
gradually generate the final network architecture.C , BN and R are the convolution, Batch Normalization and
ReLU operations in sequence.

3 OPTIMIZATION STRATEGY
For the characteristics and challenges of early NAS [11, 12, 15, 16], in this section, we will summarize
the existing NAS research work through the following four aspects: modular search strategy,
continuous search space, network architecture recycle and incomplete training.

3.1 Modular Search Strategy
The effect of the search space design on the final performance of the NAS algorithm is crucial. It
not only determines the freedom of network architecture search, but also directly determines the
upper limit of the performance of the NAS algorithm to some extent. Therefore, the reconstruction
of the search space is necessary.
A common idea is to transform global search into a modular search strategy. Therefore, the

cell-based search space is widely used in various NAS tasks because it can effectively reduce the
complexity of NAS search tasks. This is mainly because the cell-based search space often only
needs to search a few small cell structures, and then repeatedly stack such cells to form the final
network architecture. However, the global search space needs to search all the components that
build the entire network architecture. In addition, the cell-based search space can be migrated on
different data set tasks by stacking different numbers of cells, but the global search space often
does not have this feature. Therefore, compared with the global search space, the cell-based search
space is more compact and flexible.

This idea mainly stems from the observation of excellent network architectures that have been
artificially designed in recent years [4, 29, 30]. These artificial network architectures usually achieve
the construction of the overall network architecture by repeatedly stacking a certain unit operation
or a small structure. In NAS, this small repeating structure is often called a cell. The construction
of cell-based network architecture is based on this idea. The network architecture constructed in
this way is not only superior in performance, but also easy to generalize. NASNet [31] is one of the
first to explore this idea. It proposes to search for two types of cells, normal cell and reduction cell.
Normal cell: It is used to extract advanced features while keeping the spatial resolution unchanged.
Reduction cell: It is mainly used to reduce the spatial resolution. Multiple repeated normal cells
are followed by a reduction cell, and this connection is repeated multiple times to form the final
network architecture. In Fig.4 (left), we show this kind of network architecture based on two cells.

ACM Comput. Surv., Vol. 37, No. 4, Article 111. Publication date: August 2020.



A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions 111:7

Fig. 4. Left: The structure of the search space example based on two cells in [31]. The normal cell is repeated
n times and then connected to a reduction cell. The basic operation of the normal cell has a stride of 1, and
the size of the feature map remains unchanged before and after output. The basic operation stride of the
reduction cell is 2, and the size of the feature map is halved. Right: The best Normal cell with 5 blocks searched
in [31].

In Fig.4 (right), we show the internal structure of an optimal normal cell in NASNet [31]. The
structure of the corresponding reduction cell and normal cell is similar, the difference is that the
basic operation step of the reduction cell is 2. A lot of follow-up work [17, 42, 43] used the search
space similar to NASNet [31].

In ENAS [19], its experiments provide strong evidence for the selection of this similar cell-based
search space. Subsequently, this cell-based search space was soon used by other research work. In
[32–34, 44], they chose to use some unit operations to replace the reduction cell to complete the
downsampling. At this time, the model only needs to search for a normal cell. We show this structure
in Fig.5, the curved dotted line indicates the dense connection in Dpp-net [34]. At the same time as
Block-QNN [32] of NASNet [31], the pooling operation is used to replace the reduction cell in order
to reduce the size of the feature map. Hierarchical-EAS [33] uses a convolution with a kernal size of
3 × 3 and a stride of 2 instead of the reduction cell to reduce the spatial resolution. In addition, the
idea of meta-operation is used to hierarchically build the structure of the cell. Dpp-net [34] is similar
to Block-QNN [32], it uses average pooling operation instead of reduction cell. The difference is that
Dpp-net [34] draws on the idea of DenseNet [35] to use dense connections including cells to build
a network architecture, and proposes to take device into account for multi-objective optimization
tasks. In [32–34], their structure of each cell is the same, only need to search for a cell. For video
tasks, [44] uses L × 3 × 3, stride = 1, 2, 2 max-pooling instead of reduction cell. And, in order to
adapt to the complex task of video and expand the search space, the structure of each cell can
be different. AutoDispNet [37] proposes to apply the automatic architecture search technology
to optimize large-scale U-Net-like encoder-decoder architectures. Therefore, it searches for three
types of cells: normal, reduction, upsampling. In the coding stage, the network architecture consists
of alternate connections of normal cells and reduction cells. In the decoding stage, it consists of a
stack of multiple upsampling cells. [18] studied the structural commonality of the cells obtained
from some popular cell-based search spaces [17, 19, 31, 42, 45]. It defines the width and depth of the
cell, and proves from theory and experiment that due to the existence of the common connection
mode, the wide and shallow cell is easier to converge during training and easier to be searched, but
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Fig. 5. Use unit operations to replace the reduction cell in [31], while having a densely connected network
architecture. The curved dotted line indicates the dense connection in Dpp-net [34]. The initial convolution is to
extract low-level features. After the cell is repeated multiple times, a unit operation is used for downsampling.
This connection is repeated multiple times to form the final network architecture.

the generalization effect is poor. This provides guidance for us to understand cell-based NAS. In
addition, there are many cell-based NAS-related work [53, 91].
In this section, we conduct a comprehensive review of the modular search strategy. Compared

with global search, the cell-based modular search strategy effectively reduces the search space and
makes NAS more friendly to researchers. Of course, this does not mean that cell-based search can
meet all task requirements. Global search still has its unique research value because it gives the
network architecture design a higher degree of freedom [38, 103, 152].

3.2 Continuous Search Space
The proposal of NAS is regarded as a revolution in network architecture design. However, NAS
has a high demand for computation. For example, NASNet [31] used RL methods to spend 2000
GPU days to obtain the best architecture in CIFAR-10 and ImageNet. Similarly, AmoebaNet [42]
spent 3150 GPU days using evolutionary learning. An internal reason for the inefficiency of these
mainstream search methods based on RL [11, 12, 31], EA [15, 42], Bayesian optimization [61], SMBO
[36] and MCTS [62] is that they regard network architecture search as a black-box optimization
problem in a discrete search space.
For this, DAS [68] explores to transform the discrete network architecture space into a con-

tinuously differentiable form, and uses gradient optimization techniques to search the network
architecture. It mainly focuses on the search of hyperparameters of convolutional layers: filter
sizes, number of channels, and grouped convolutions. MaskConnect [69] found that the existing
cell-based network architecture generally adopts a predefined fixed connection method between
modules, for example, each module only connects its first two modules [29], or connects all the
previous modules [35]. This connection method may not be optimal. It uses the modified gradient
method to focus on exploring the connection method between modules. In addition, these works
[70–72] are also exploring the search for network architecture on continuous domains. However,
the search for these network architectures is limited to fine-tuning the specific structure of the
network.
In order to solve the above challenges, DARTS [17] appeared. DARTS continuously relaxes the

originally discrete search space, making it possible to use gradients to efficiently optimize the search
space of the architecture. DARTS follows the cell-based search space of NASNet [31] and further
normalizes it. This cell is regarded as a directed acyclic graph (DAG), which is formed by sequentially
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connecting N nodes. Each cell has two input nodes and one output node. For convolutional cells, the
input node is the output of the first two cells. For the recurrent cell, one is the input of the current
step, and the other is the state of the previous step. The output of cell is the concatenation result of
all intermediate nodes. Each intermediate node x (j) in the cell is a potential feature representation,
and is associated with each previous intermediate node x (i) in the cell through a directed edge
operation o(i, j). For a discrete search space, each intermediate node can be expressed as:

x (j) =
∑
i<j

o(i, j)
(
x (i)

)
. (3)

In DARTS, it makes the discrete search space continuous by relaxing the selection of candidate
operations to a softmax of all possible operations. The mixed operation ō(i, j)(x) applied to feature
map x can be expressed as:

ō(i, j)(x) =
∑
o∈O

exp
(
α (i, j)
o

)
∑
o′∈O exp

(
α (i, j)
o′

) o(x) (4)

where O represents a set of candidate operations, α (i, j)
o represents the weight of operation o

on directed edge e(i, j). Therefore, the search of the network architecture has evolved into an
optimization process for a set of continuous variables α = {α (i, j)}. At the end of the search, the
most likely operation o(i, j) on the directed edge e(i, j) will be selected and other operations will be
discarded.

o(i, j) = argmaxo∈O α (i, j)
o (5)

By solving a bilevel optimization problem [66, 67] to jointly optimize the probability of mixed
operations (the parameters α of the network architecture) and network weightsw :

min
α

Lval (w∗(α),α)
s.t. w∗(α) = argminw Ltrain(w,α)

(6)

where Lval and Ltrain denote validation and training losses, respectively, α is the upper-level
variable and w is the lower-level variable. By jointly optimizing this problem, the optimal α is
obtained, and then the discretization is performed to obtain the final network architecture. We
show this process in Fig.6.

Compared with DARTS, the search of the network architecture is changed from the selection of
discrete candidate operations to the optimization of the probability of continuous mixed operations.
During the same period, NAO [73] chose to encode the entire network architecture to map the
originally discrete network architecture to continuous embedded encoding. Then, the output of the
performance predictor is maximized by the gradient optimization method to obtain the optimal
embedded coding. Finally, a decoder is used to discretize the optimal continuous representation
(that is, the optimal embedded coding) into the optimal network architecture. In addition, DARTS
uses the arдmax strategy to eliminate the less probable operations among the mixed operations to
discretize the network architecture. However, common non-linear problems in network operation
introduce bias into the loss function. This bias will exacerbate the performance difference between
the derived child networks and the converged parent networks, resulting in the need to retrain the
parameters of the derived child networks. Therefore, a NAS solutionwith less performance deviation
between the derived child networks and the converged parent networks is needed. To this end,
SNAS [45] starts with the delayed reward of reinforcement learning, and analyzes the reason why
delayed reward leads to the slow convergence speed of reinforcement learning when performing
architecture search. Therefore, SNAS proposes to remodel the NAS to theoretically bypass the
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(a) Connection to be
determined

(b) Continuous relax-
ation

(c) Joint optimization (d) Discrete network ar-
chitecture

Fig. 6. Continuous relaxation and discretization of search space in DARTS [17]. (a) A cell structure to be
learned, the specific operation on the side is unknown. (b) Continuous relaxation of the cell-based search
space, each edge e(i, j) is a mixture of all candidate operations. (c) Joint optimization of the probability of
mixed operations and network weights. (d) Discrete searched network architecture.

problem of delayed rewards for reinforcement learning, and at the same time to continually network
parameters, so that network operation parameters and network architecture parameters can be
jointly optimized using a gradient method. Based on this, SNAS has proposed a more efficient
and automated network architecture search framework, while maintaining the completeness and
differentiability of the NAS pipeline.
In the work of SNAS, DARTS and many other NAS [75–78], the feasible paths of the searched

network architecture depend on each other and are closely coupled during the search phase.
Although SNAS reduces the performance difference between the derived child network and the
converged parent network to some extent, SNAS and DARTS still have to choose only one path
during the verification phase. This crude decoupling inevitably leads to a gap between network
architectures during the search and verification phases. To this end, DATA [74] developed the
Ensemble Gumbel-Softmax (EGS) estimator. It can decouple the relationship between different paths
of the network architecture, and can achieve seamless transfer of gradients between different paths.
This solves the problem that the architecture cannot be seamlessly connected between search and
verification.

Furthermore, I-DARTS [79] pointed out that the softmax-based relaxation constraint between
each pair of nodes may cause DARTS to be a "local" model. In DARTS, the middle node of the cell is
connected to all the precursor nodes, and when discretizing the network architecture, there is only
one directional edge between each pair of nodes. This results in edges from different nodes that
cannot be compared with each other. In addition, DARTS requires only one directed edge between
each pair of nodes. This constraint design has no theoretical basis and limits the size of the DARTS
search space. These local decisions caused by the bias problem in graph-based models [80, 81]
will limit DARTS to make the optimal architectural choices. Based on this, I-DARTS proposed an
interesting and simple idea: use a softmax to simultaneously consider all input edges of a given
node. We show the cell structure comparison of DARTS and I-DARTS in the recurrent neural
network in Fig.7. As shown in Fig.7b, given a node, I-DARTS can determine whether there are
edges connected between related nodes according to the importance of all input edges: there are
multiple connected edges or no related edges.
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(a) DARTS cell (b) I-DARTS cell

Fig. 7. Comparison of cell structure of DARTS [17] and I-DARTS [79] in recurrent neural network. (a) In
DARTS, edges from different nodes cannot be compared. And when discretizing the network architecture,
there is only one correlation edge between each pair of nodes. (b) In I-DARTS, a given node uses a softmax
while considering all input edges. Given a node, I-DARTS can determine whether there are edges connected
between related nodes according to the importance of all input edges: there are multiple connected edges or
no related edges.

P-DARTS [43] starts with the deep gap between the search and evaluation of network architecture
and improves DARTS. In DARTS, due to the limitation of computing resources, DARTS uses a
shallow cell stack architecture in the search phase, and in the evaluation phase, stacks more
searched cells to process data sets with higher resolution. Therefore, the basic cell of the network
architecture used for evaluation is actually designed for shallow architecture, which is different
from the deep network architecture used in the evaluation stage. Based on this, P-DARTS proposes
to use progressive search to gradually increase the depth of the network during the search phase.
And by gradually reducing the candidate operation set according to the weight of the mixed
operation in the search process, in order to cope with the problem of the increase in the calculation
volume caused by the increase in depth. At the same time, P-DARTS proposes regularization of the
search space to deal with the problem of insufficient stability when searching in deep architectures
(algorithms are heavily biased towards skip-connect).

Compared with NAS based on RL and EA, although DARTS greatly improves the search efficiency,
it is not enough. As shown in Fig.6c, in the search phase, DARTS continuously relaxes the cell’s
search space and optimizes all parameters in the DAG together. This causes DARTS to occupy too
much memory on the device when searching, and the search speed is slow. At the same time, the
effects of different operations between the same pair of nodes may be cancelled each other, thereby
destroying the entire optimization process. To this end, GDAS [82] proposes to use a differentiable
architecture sampler in a training iteration to sample only one subgraph in the DAG, so only one
part of the DAG needs to be optimized in one iteration. We show this process in Fig.8. At the
same time, the architecture sampler can be optimized using a gradient-based method during the
verification phase. Therefore, the search efficiency of GDAS has been further improved.

In order to reduce DARTS’s memory usage during search and improve search efficiency, unlike
GDAS sampling subgraphs in DAG and training only one subgraph in one iteration, PC-DARTS [83]
chooses to start from the channel. In the search process, PC-DARTS samples the channels, and only

ACM Comput. Surv., Vol. 37, No. 4, Article 111. Publication date: August 2020.



111:12 Ren and Chang, et al.

Fig. 8. In GDAS [82], an example of sampling subgraphs in a DAG with 3 intermediate nodes. Colored lines
indicate operations in the candidate operation set, and black lines indicate corresponding information flows.
The circles indicate the intermediate features after operation processing. Each intermediate node is equal to
the sum of all the sampled intermediate features. In one iteration, only one sampled subgraph is trained.

convolves the sampled channel features to achieve efficient gradient optimization. In order to deal
with the problem of inconsistent information brought by the channel sampling strategy, PC-DARTS
uses edge normalization to solve this problem. It reduces the uncertainty in the search process by
adding a set of edge-level parameters. Therefore, PC-DARTS can save memory and is more efficient
and stable. [110] recent found that DARTS [17] has a poor test performance for the architecture
generated in a wide search space. It believes that when the discovered solutions is consistent
with the high verification loss curvature in the architecture space, the discovered architecture is
difficult to promote. And by adding various types of regularization to explore how to make DARTS
more robust. Finally, [110] proposed several simple variants and achieved good generalization
performance. Although we have done many reviews, there are still many improvements based on
DARTS [113, 151].
In this section, we provide a comprehensive and systematic overview of optimized NAS work

using gradient strategies on a continuous search space. Due to the simplicity and elegance of the
DARTS architecture, the research work related to DARTS is quite rich. And gradient optimization
in continuous search space is an important trend of NAS.

3.3 Network Architecture Recycle
The early NAS [11, 12, 15, 16] and much of the subsequent work [17, 38–40] was to search the
network architecture from scratch. From a certain perspective, this kind of thinking does increase
the freedom of network architecture design, and it is very likely to design a new high-performance
network structure unknown to humans. However, it is clear that this idea also increases the time
complexity of searching for the best network architecture. Because, it does not make full use of
the prior knowledge of the existing artificially designed high-performance network architecture.
Therefore, a new idea is to use the existing artificially designed high-performance network architec-
ture as a starting point, and use the NAS method to modify or evolve these network architectures,
so as to obtain a more promising network architecture at a lower computing cost. This process
is generally referred to as network transformation. Net2Net [46] conducted a detailed study of
network transformation technology and proposed the function-preserving transformations to
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Fig. 9. In EAS [50], architecture search based on network transformation. After the existing network layer
is encoded by the layer encoder, Bi-LSTM [47] is used as a meta-controller to learn the low-dimensional
feature representation of the network architecture. The multi-action network combines these features to
decide whether to adopt the corresponding network transformation operation (deepening layer or widening
layer). Finally, reinforcement learning is used to update the meta-controlled parameters.

achieve reuse of model parameters after transformation. It can effectively accelerate the training of
new and larger networks.
Based on this idea, [50] proposes efficient architecture search (EAS), which use the encoder

network as a meta-controller to learn the low-dimensional representation of the existing network
architecture, and refer to the multiple actor networks in Net2Net [46] to decide whether to make
corresponding adjustments to the network architecture at the layer level (deepening or widening
layer). In addition, it uses reinforcement learning strategies to update the parameters in the meta-
controller. EAS considers that the network transformation at the layer level needs to combine the
information of the entire network architecture, so a bidirectional recurrent network (Bi-LSTM) [47]
is used as the network encoder. Since EAS is a network transformation on an existing network, the
reuse of models and weights can greatly reduce the amount of calculation. We show the overall
network architecture of EAS in Fig.9. In Fig.10, we also showed the internal structure of two action
networks: Net2Wider and Net2Deeper. In Net2Wider, the action network shares the same sigmoid
classifier, and decides whether to widen the layer according to each hidden state of the encoder.
In Net2Deeper, the action network inputs the state of the final hidden layer of Bi-LSTM into the
recurrent network, and the recurrent network decides where to insert the layer and the parameters
of the inserted layer.

Contrary to widening or deepening the layers of the existing network in EAS [50], N2N learning
[51] considers compressing the teacher network by removing or shrinking the layers. It compresses
the teacher network through a two-stage operation selection: first, the layer removal is performed
on the macro level, and then the layer shrinkage is performed on the micro level. Use reinforcement
learning to explore the search space, and use knowledge distillation [55] to train each generated
network architecture. Then learn a locally optimal student network. Using this method, under the
condition of similar performance, a compression ratio of more than 10× is achieved for networks
such as ResNet-34 [29]. Unlike EAS [50] and N2N learning [51], which can only deepen (remove) and
widen (shrink) the network at the layer level, Path-level EAS [56] realizes a network transformation
at the path level. The impulse for this idea stems from the performance gains of the multi-branch
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Fig. 10. In EAS [50], the internal structure of two action networks: Net2Wider and Net2Deeper. In Net2Wider,
the action network shares the same sigmoid classifier, and decides whether to widen the layer according to
each hidden state of the encoder. In Net2Deeper, the action network inputs the state of the final hidden layer
of Bi-LSTM into the recurrent network, and the recurrent network decides where to insert the layer and the
parameters of the inserted layer.

network architecture included in the manually designed network [29, 30, 57, 58]. It achieves network
path-level transformation by replacing a single layer with multi-branch operations with allocation
and merge strategies. Allocation strategies include: replication and split. Merge strategies include:
add and concatenation. We show an example of the process of implementing a path-level network
transformation by using a multi-branch operation instead of a single layer in Fig.11. Another similar
work NASH-Net [84], which further proposes four network morphism types based on Net2Net
[46]. NASH-Net can start from a pre-trained network, apply network morphism to generate a set
of sub-networks, and get the best sub-network after a short period of training. Then, starting from
the best sub-network, iterate this process using the Neural Architecture Search by Hill-climbing
(NASH) to get the best network architecture.

For complex tasks such as semantic segmentation or object detection, previous work often used
the network designed for image classification as the backbone network. In fact, performance gains
can be obtained by designing networks specifically for complex target tasks. Although there are
some works [63–65] using NAS to design backbone networks for semantic segmentation or object
detection tasks, pre-training still exists and the computational cost is high. Fast Neural Network
Adaptation (FNA) [59] proposes a method that can adapt the architecture and parameters of a
network to new tasks at almost zero cost. It starts from a seed network (manually designed high-
performance network), expands it into a super network in its operation set, and then uses the NAS
method [17, 19, 60] to adapt the network architecture to obtain the target architecture. And use the
seed network to map the parameters to the super network and the target network to initialize the
parameters. Finally, the target network is obtained by fine-tuning on the target task. We show this
process in Fig.12. It is precisely because of the low cost of FNA in network transformation that it is
possible for NAS to design a special network architecture for large-scale tasks such as detection
and segmentation.
In this section, we give a comprehensive overview of NAS based on architecture recycle.

This method makes it possible to utilize a large number of previously artificially designed high-
performance networks. It saves the NAS from having to search the network architecture from
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Fig. 11. In Path-level EAS [56], an example of a process for implementing path-level network transformation
by using a multi-branch operation instead of a single layer. (a) Use the replication-add strategy to add branches
to a single layer. (b) Use the split-concat strategy to further add branches to the network. (c) Replace identity
mapping with a 3 × 3 depthwise-separable convolution. (d) The tree structure of the network architecture in
(c).

scratch, reducing a large number of unnecessary random searches in the massive search space.
Compared with other optimization strategies, there are relatively few studies on NAS based on
network architecture recycling.

3.4 Incomplete Training
The key technology of NAS is to use a search strategy to find the best network architecture by
comparing the performance of a large number of candidate network architectures. Therefore,
the performance ranking of candidate network architectures is extremely important. Early NAS
[11, 12, 15, 16] usually fully trained the candidate network architecture, and then obtained the
ranking of the candidate network architecture based on its performance on the validation set. This
method is too time-consuming because there are too many candidate network architectures to
compare.
Although they also used some methods to accelerate the ranking of candidate network archi-

tectures. For example: NAS-RL [11] uses parallel and asynchronous updates [41] to accelerate
the training of candidate network architectures. MetaQNN [12] compares the performance of the
candidate network architecture after the first epoch training with the performance of the random
predictor to determine whether it is necessary to reduce the learning rate and restart training.
Large-scale Evolution [15] allows the mutated child network architecture to inherit the weight of
the parent as much as possible, thereby reducing the burden of retraining the candidate network
architecture. However, there are still a large number of child networks whose structural changes
cannot inherit the weight of their parents after mutation, and these candidate networks will be
forced to retrain. Although the above methods also accelerate the training of candidate network
architectures to a certain extent, they still require a lot of computing power and the acceleration
effect is relatively limited. Therefore, some research that can be used to further accelerate the
training of candidate network architectures to obtain their relative ranking is necessary.

3.4.1 Training from scratch? Do we really need to train every candidate network architecture from
scratch? The answer is negative.
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Fig. 12. The overall framework of FNA [59]. It starts from a seed network, expands it into a super network
in its operation set, and then uses the NAS method to adapt the network architecture to obtain the target
architecture. And use the seed network to map the parameters to the super network and the target network
to initialize the parameters. Finally, the target network is obtained by fine-tuning on the target task.

By treating the candidate network architecture as an independent individual, each candidate
network architecture is trained from scratch, and the candidate network architecture is ranked
according to their performance on the validation set. This may provide a more accurate ranking,
as other work has done [11, 31, 33, 36]. In this process, the parameters of each trained candidate
network architecture are directly discarded. Obviously these trained parameters have not been
fully utilized. So a new idea of parameter sharing has emerged.
ENAS [19] is the first NAS work to explicitly propose parameter sharing. ENAS noted that the

candidate network architecture in NAS can be regarded as a directed acyclic subgraph sampled
in a supercomputing graph constructed by the search space. We show this sampling process in
Fig.13. Based on this observation, ENAS uses LSTM as a controller to search the optimal subgraph
on a large computation graph to obtain the neural network architecture. In transfer learning and
multi-task learning, the weights obtained by training a model designed for a specific task on a
data set are also applicable to other models designed for other tasks [85–87]. Encouraged by this,
ENAS proposed to force the sharing of parameters among all different child models (candidate
architecture). Through this mechanism, the child models can obtain empirical performance with
each other, thereby avoiding the complete training of each child model from scratch. We show
an example of different subgraphs sharing weights in Fig.13. The supercomputing graph can be
expressed as a DAG. The nodes in the graph are defined as local calculations, and the edges represent
the flow of information. Each node has its own corresponding weight parameter, as shown in
the upper right of Fig.13. However, the corresponding parameters can only be activated when a
specific edge is sampled. The ENAS mechanism allows all subgraphs (that is, candidate network
architectures) to share parameters. Therefore, EANS has greatly improved its search efficiency
compared to [11, 31, 33, 36]. Subsequently, CAS [54] explored a multi-task architecture search
based on ENAS. It extends NAS to transfer learning across data sources, and introduces a novel
continuous architecture search to solve this forgetting problem in the continuous learning process.
This allows CAS to inherit the experience gained from the previous task when training a new
task, so that the model parameters can be continuously trained. This is very beneficial for NAS
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research on multi-tasking. Moreover, AutoGAN [53] first introduced NAS into generative adversarial
networks (GANs) [92] and used Inception score (IS) [93] as the reward value of RL to accelerate
the search process through parameter sharing ENAS [19] and dynamic-resetting. And use the
progressive GAN training [94] to introducemulti-level architecture search (MLAS) in AutoGAN, and
gradually implement NAS. Compared with the most advanced manual GANs [94–97], AutoGAN
is very competitive. The parameter sharing mechanism is also used to accelerate the deployment
research of the NAS architecture model in multiple devices and multiple constrained environments.
At the kernel-level, OFA [99] uses a elastic kernel mechanism to meet the application needs of
multi-platform deployment and the diversity of visual needs of different platforms. Small kernels
share the weight of large kernels. In order to avoid the repeated use of centering sub-kernels
(centering sub-kernels is used as both an independent kernel and a part of a large kernel) to reduce
the performance of certain sub-networks, OFA also introduces a kernel transformation matrix. At
the network level, OFA recommends training the largest network first, and the smaller network
sharing the weight of the larger network before fine-tuning. The weight of the large network
can provides a good initialization for the small network, which greatly accelerates the training
efficiency.
In addition, the one-shot based method also uses the idea of parameter sharing. SMASH [23]

proposes to train an auxiliary HyperNet [88] and use the auxiliary HyperNet to generate weights for
other candidate network architectures. In addition, SMASH also uses the early training performance
of different networks according to the research in Hyperband [89] to provide meaningful guidance
suggestions for the ranking of candidate network architectures. Parameter sharing is mainly
reflected in hypernetwork and between candidate network architectures. The use of the auxiliary
HyperNet avoids the complete training of each candidate network architecture. By comparing the
performance of the candidate network architectures with weights generated by the HyperNet on
the verification set, their relative rankings are obtained. This allows SMASH to quickly obtain
the optimal network architecture at the cost of a single training session. Understanding One-Shot
Models [22] conducted a comprehensive analysis of the rationality of the parameter sharing ideas
used in SMASH [23] and ENAS [19]. In addition, Understanding One-Shot Models also discussed
the necessity of the hypernetwork in SMASH and the RL controller in ENAS, and pointed out that
a good enough result can be obtained without the hypernetwork and RL controller. Unlike SMASH,
which encodes an architecture into a three-dimensional tensor through a memory channel scheme,
Graph HyperNetwork (GHN) [90] recommends using computation graphs to represent the network
architecture, and then using graph neural networks to perform architecture searches. Compared to
SMASH, which can only use hypernetwork to predict some weights, GHN can predict all the free
weights through a graph model. Therefore, GHN based on network topology modeling can predict
network performance faster and more accurately than SMASH.

A typical one-shot NAS needs to randomly sample a large number of candidate architectures from
the hypernetwork with parameter sharing and evaluate them to find the best network architecture
[22, 23]. SETN [91] noted that it is extremely difficult to find the best architecture from these
sampled candidate architectures. Because, in the relevant NAS [22, 23, 82], the shared parameters
are closely coupled with the learnable architectural parameters. These deviations introduced into
the template parameters will cause some of the learnable architectural parameters to be more
biased towards simple networks (these networks have fewer layers and are more lightweight).
Because they converge faster than more complex networks, which leads to a simplified search
architecture. At the same time, it also makes the candidate architectures sampled have a very low
good rate. To this end, SETN adopts a uniformly stochastic training strategy to treat each candidate
architecture fairly, so that they are fully trained to obtain more accurate verification performance.
In addition, SETN is also equipped with an estimator for the template architecture. Unlike the
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Fig. 13. Parameter sharing mechanism in ENAS [19]. The candidate network architecture in NAS can be
viewed as a directed acyclic subgraph sampled in a supercomputing graph constructed by the search space.
The nodes in the graph represent local calculations, and the edges represent information flow. Each node has
its own corresponding weight parameter, as shown in the upper right. Only when a specific edge is sampled
will the corresponding parameter be activated and updated. The ENAS mechanism allows all subgraphs (that
is, candidate network architectures) to share parameters.

random sampling methods previously used in Understanding One-Shot Models [22] and SMASH
[23], the estimator in SETN can be used to learn the probability that the candidate architecture has
a lower verification loss, and the low verification loss architecture with a higher probability will be
selected for one-shot evaluation. At the same time, the estimator is trained on the validation set.
Therefore, SETN improves the excellent rate of the sampling candidate architecture compared to
Understanding One-Shot Models [22] and SMASH [23], so that it is more likely to find the optimal
architecture.

[24] through the evaluation of the effectiveness of the NAS search strategy found that the weight
sharing strategy in ENAS [19] resulted in inaccurate performance evaluation of the candidate
architecture, making it difficult for the NAS to search for the best architecture. In addition, the
research of Fairnas [100] and [101] also shows that candidate network architectures based on
these parameter sharing often cannot be adequately trained, which will lead to inaccurate ranking
of candidate network architectures. In NAS work based on gradient optimization [17, 102, 103],
the joint optimization of supernet weights and architectural parameters will also introduce bias
between sub-models. To this end, DNA [21] proposed a NAS’s large-scale search space for modular,
by ensuring that the candidate architecture is adequately trained to reduce the representation shift
caused by shared parameters. In addition, DNA [21] also uses block-wise search to evaluate all
candidate architectures within the block. Use these methods to evaluate candidate architectures
more accurately. GDAS-NSAS [25] also thought and improved the weight sharing mechanism in
one-shot NAS, it proposed a NSAS loss function to solve the problem of multi-model forgetting
(when weight sharing is used to sequentially train a new network architecture, the performance of
the previous network architecture is reduced) caused by weight sharing during the super network
training process. Finally, GDAS-NSAS [25] applies the proposed method to RandomNAS [104] and
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GDAS [82], which effectively suppresses the multi-model forgetting problem and improves the
training quality of the supernet.
Differentiable neural architecture search also uses similar parameter sharing ideas, such as

DARTS-like work [17, 43, 79, 83]. For details, refer to Sec.3.2. In ENAS, a controller is used to sample
subgraphs in a supercomputing graph. Subgraphs with the same information flow share parameters
in the search phase and only need to optimize the subgraphs to be sampled in each iteration. The
difference is that the DARTS-like method chooses to directly optimize a super network, and the
best sub-network is decoupled from the super network according to the learned mixed operation
weights. Parameters are shared among different sub-networks in the super network. In addition,
optimization strategies based on network architecture recycle can often be initialized with the help
of function-preserving [46] to inherit the parameters of the template network, thereby avoiding
retraining of the sub-network architecture. For details, refer to Sec.3.3. For example: EAS [50],
Path-level EAS [56] and N2N learning [51], etc.

3.4.2 Training to convergence? Do we really need to train each candidate network architecture to
convergence? The answer is negative.
In order to quickly analyze the effectiveness of the current model in deep learning, human

experts can often judge whether the current model is necessary to continue training according to
the learning curve of the model. Therefore, the model training with no potential will be terminated
as soon as possible, instead of waiting for its convergence to save resources for new exploration.
Similar strategies can also be used to rank the performance of NAS candidate architectures. For
candidate architectures with no potential, training can be terminated early, and for more promising
architectures, more adequate training can be obtained.
Early termination of training is not a new idea, many researchers have done a lot of related

research. For example: [106] uses the probabilistic method to simulate the learning curve of the
deep neural network, and terminates the training of the poorly running model in advance. However,
it requires a long early training to accurately simulate and predict the learning curve. [107] extends
[106], in [107], the probability model of the learning curve can be set across hyperparameters, and a
mature learning curve is used to improve the performance of the Bayesian neural network. Similar
strategies are also used to solve hyperparameter optimization problems [89, 108].

The above methods are based on the partially observed early performance to predict the learning
curve, and the corresponding machine learning model is designed. In order to imitate human
experts so that in NAS search can also automatically identify and terminate training early below
standard candidate architectures, [20] combines learning curve prediction with NAS tasks for the
first time. It builds a set of standard frequentist regression models, and obtains the corresponding
simple features from the network architecture, hyperparameters and early learning curve. Use
these features to train the frequentist regression model, and then predict the final verification set
performance of the network architecture with early training experience. Performance prediction is
also used in PNAS [36]. In order to avoid training and evaluation for all child networks, it learns
a predictor function, which can be trained based on the observable early performance of the cell.
Then use the predictor to evaluate all candidate cells, and select top-k cells, and repeat this process
until a sufficient number of blocks of cells are found. As shown by the black curve in Fig.14, we
show an example of such performance prediction based on early performance observations.
NAO [73] uses a performance predictor similar to previous work [20, 36, 109]. Unlike PNAS

[36] that uses a performance predictor to evaluate and select the generated network architecture
to speeds up the search process. In NAO [73], after the encoder completes the continuous rep-
resentation of the network architecture, the performance predictor is taken as the optimization
goal of gradient ascent. By maximizing the output of the performance predictor f , the continuous
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Fig. 14. Example of early termination of training strategy. The black curve shows an attempt to use an
observable early performance learning curve (solid line) to predict the final performance of the network
architecture on the validation set [20, 36, 109]. The three red curves show examples of hypothesis that the
performance of the network architecture during early training and convergence is consistent with respect to
ranking [49]. Using performance prediction and early performance ranking assumptions can terminate the
training of network architectures that lack potential as early as human experts, and use limited computing
resources to explore more potential network architectures. This speeds up the NAS architecture search
process.

representation of the best network architecture is obtained. Finally, use the decoder to get the final
discrete network architecture. Unlike previous NAS based on performance prediction [20, 36, 109],
in multinomial distribution learning for NAS, MdeNAS [49] proposed a performance ranking hy-
pothesis, that is, the relative performance ranking of the network architecture at each training stage
is consistent. In other words, the network architecture that performed well in the early days still
has good performance when the training converges. MdeNAS [49] has done a lot of experiments to
verify this hypothesis, according to which the early performance of candidate architectures can
be used to quickly and easily obtain their relative performance rankings, thereby speeding up the
search process of the network architecture. We show an early performance ranking hypothesis in
Fig.14 (three red curves).
In this section, we focus on the challenge of fully trained of candidate architectures, starting

with the necessity of two aspects from training from scratch and training to convergence, and com-
prehensively and systematically summarize the existing work. Compared with other optimization
strategies, this part of the research work is relatively small, but it is still very necessary.

4 PERFORMANCE COMPARISON
NAS is a very promising study. In Section 2, we analyzed the common characteristics of early NAS
and summarized the challenges facing early NAS to be widely used. In Section 3, we conduct a
comprehensive and systematic review of the solutions that our existing work has taken to address
these challenges. In this section, we will classify and compare the performance of existing NAS based
on mainstream search methods [26, 27], and at the same time report the optimization strategies
they use according to Section 3. These search methods mainly include: reinforcement learning
(RL), evolutionary algorithm (EA), gradient optimization (GO), random search (RS) and sequential
model-based optimization (SMBO). We look forward to obtaining their similarities and differences
from these summaries.

Things are not as simple as we think. In fact, it is relatively difficult to compare NAS performance
because NAS lacks some baselines. In addition, the preprocessing, hyperparameters, search space,
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trick, etc. between different NAS are different, which exacerbates the difficulty of NAS performance
comparison. For example, learning rate decay, regularization (for example, DropPath [31, 134]),
augmenting techniques (for example, Cutout [129]), etc. The random search strategy is considered
to be a strong baseline. For example, in [24], random search found the best RNN cells compared to
other strategies. The findings in [127], [33] and [104] also prove this. Therefore, [127] proposes to
use the average architecture of the random search strategy as the baseline for comparison.

We summarize the performance of the state-of-the-art NAS and mainstream artificial networks
on the CIFAR-10 dataset in Table 1. At the same time, based on Section 3, we also reported the
optimization strategy used in NAS. Similarly, we report the performance comparison on the
ImageNet dataset in Table 2. Because the optimization strategies used in the same NAS method are
the same, we therefore omit the reporting of the corresponding optimization strategies in Table 2.
By observing Table 1 and 2, we clearly know that in popular NAS, the use of modular search

strategies is extremely extensive. This is mainly because compared to global search, modular search
greatly reduces the complexity of the search space. However, as summarized in Section 3.1, this
does not mean that the modular search strategy must be better than the global search. Moreover, we
can say with certainty that incomplete training is also widely used, which can effectively accelerate
the ranking of candidate network architectures, thereby reducing the search duration. In addition,
among many optimization strategies, the gradient optimization based on the continuous search
space can greatly reduce the search cost, and has a very rich research. We also observe that NAS
based on random search strategy has also achieved extremely competitive performance. However,
it is clear that NAS research on random search strategies is relatively inadequate. The optimization
strategy of architecture recycle also has relatively excellent performance, but there are relatively
few related studies. On the other hand, transfer learning is a widely used technique in NAS tasks,
that is, the architecture searched on a small dataset (CIFAR-10) will be transferred to a large dataset
(ImageNet). Therefore, the search time costs used in the two datasets shown in Table 1 and 2 are the
same [17, 31, 38, 45]. These search tasks in advance on small datasets are often called agent tasks.
ProxylessNAS [103] also studies the problem of searching directly on large target tasks without
agents.
In this part, we compare and summarize the popular NAS method with mainstream artificially

designed networks in multiple dimensions in terms of performance and parameter amount. It is
worth noting that, the performance gains obtained using NAS are limited compared to manually
designed networks.

5 FUTURE DIRECTIONS
The emergence of NAS is exciting, it is expected to end the tedious trial and error process of
manually designing network architecture. And, it is also hoped to design a network structure that
is completely different from the artificial network, so as to break through the existing human
mindset. Artificially designed networks have made breakthroughs in many fields, including image
recognition [4, 7, 112], machine translation [1, 3, 141, 149], semantic segmentation [142, 143, 148],
object detection [8, 146, 147], and video understanding [144, 145] and so on. Although the research
related to NAS has been quite rich, compared with the rapid development of artificial network
architecture design in various fields, NAS is still in the preliminary stage of research. The current
NAS is mainly focused on improving the classification accuracy of images, compressing the search
time of the network architecture, and making it as civilian as possible. In this process, a proper
baseline is crucial, which helps to avoid NAS search strategy research being masked in various
powerful augmenting technologies, regularization, and search space design tricks. In addition,
the search strategies currently used by NAS are relatively concentrated, especially GO based on
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Table 1. On CIFAR-10, the performance comparison between the state-of-the-art NAS and mainstream
artificial networks. For clarity, we classify NAS according to mainstream search methods: reinforcement
learning (RL), evolutionary algorithm (EA), gradient optimization (GO), random search (RS) and sequential
model-based optimization (SMBO). At the same time, the search strategy used in the NAS was reported
based on Section 3. Cutout is an augment technology in [129].

Search
method Reference Venue

Optimization Strategy
Error
Acc (%)

Params
(Millions)

GPU
Days

Modular
search
strategy

Continuous
search
space

Architecture
recycle

Incomplete
training

Human

WRN [131] CVPR16 3.87 36.2 -
Shark [132] CoRR17 3.55 2.9 -
PyramidSepDrop +
ShakeDrop[133] CoRR16 2.67 26.2 -

ResNet [134] ECCV16 6.41 1.7 -
Fractalnet [135] ICLR17 5.22 38.6 -
DenseNet-BC [35] CVPR17 3.46 25.6 -

RL

NAS-RL [11] ICLR17 3.65 37.4 22,400
MetaQNN [12] ICLR17 6.92 11.18 100
EAS [50] AAAI18 ✓ ✓ 4.23 23.4 10
NASNet-A [31] CVPR18 ✓ 3.41 3.3 2,000
NASNet-A + Cutout [31] CVPR18 ✓ 2.65 3.3 2,000
Block-QNN [32] CVPR18 ✓ 3.54 39.8 96
Path-level EAS [56] ICML18 ✓ ✓ 2.99 5.7 200
Path-level EAS + Cutout [56] ICML18 ✓ ✓ 2.49 5.7 200
N2N learning [51] ICLR18 ✓ ✓ 6.46 3.87 2.1
ProxylessNAS-R +
Cutout [103] ICLR19 ✓ 2.30 5.8 N/A

FPNAS + Cutout [38] ICCV19 ✓ ✓ 3.01 5.76 0.8

EA

Large-scale Evolution [15] ICML17 ✓ 5.40 5.4 2,600
GeNet [16] ICCV17 5.39 N/A 17
Genetic Programming CNN [5] GECCO17 5.98 1.7 14.9
Hierarchical-EAS [33] ICLR18 ✓ 3.75 15.7 300
NASH-Net [84] ICLR18 ✓ ✓ 5.20 19.7 1
Neuro-Cell-based
Evolution + Cutout [128]

ECML
PKDD18 ✓ ✓ ✓ 3.57 5.8 0.5

AmoebaNet [42] AAAI19 ✓ 3.34 3.2 3,150

GO

ENAS + micro [19] ICML18 ✓ ✓ ✓ 3.54 4.6 0.5
ENAS + micro + Cutout [19] ICML18 ✓ ✓ ✓ 3.54 4.6 0.5
ENAS + macro [19] ICML18 ✓ ✓ 4.23 21.3 0.32
SMASH [23] ICLR18 ✓ ✓ 4.03 16 1.5
Understanding
One-Shot Models [22] ICML18 ✓ ✓ ✓ 4.00 5.0 N/A

DARTS (1st order) +
Cutout [17] ICLR19 ✓ ✓ ✓ 3.0 3.3 1.5

DARTS (2nd order) +
Cutout [17] ICLR19 ✓ ✓ ✓ 2.76 3.3 4

SNAS + Cutout [45] ICLR19 ✓ ✓ ✓ 2.85 2.8 1.5
PARSEC + Cutout [130] CoRR19 ✓ ✓ ✓ 2.81 3.7 1
GHN [90] ICLR19 ✓ ✓ ✓ 2.84 5.7 0.84
ProxylessNAS-G +
Cutout [103] ICLR19 ✓ ✓ 2.08 5.7 N/A

BayesNAS [136] ICML19 ✓ ✓ ✓ 2.81 3.4 0.2
P-DARTS + Cutout [43] ICCV19 ✓ ✓ ✓ 2.50 3.4 0.3
DATA + Cutout [74] NeurIPS19 ✓ ✓ ✓ 2.59 3.4 1
SGAS [151] CVPR20 ✓ ✓ ✓ 2.66 3.7 0.25
GDAS-NSAS [25] CVPR20 ✓ ✓ ✓ 2.73 3.54 0.4
PC-DARTS + Cutout [83] CVPR20 ✓ ✓ ✓ 2.57 3.6 0.1

RS

Hierarchical-EAS Random [33] ICLR18 ✓ 3.91 N/A 300
NAO Random-WS [73] NeurIPS18 ✓ ✓ 3.92 3.9 0.3
NASH-Net Random [84] ICLR18 6.5 4.4 0.2
DARTS Random [17] ICLR19 ✓ 3.29 3.2 4
RandomNAS + Cutout [104] UAI19 ✓ ✓ 2.85 4.3 2.7
RandomNAS-NSAS [25] CVPR20 ✓ 2.64 3.08 0.7

SMBO

NASBOT [61] NeurIPS18 8.69 N/A 1.7
PNAS [36] ECCV18 ✓ ✓ 3.41 3.2 225
NAO [73] NeurIPS18 ✓ ✓ ✓ 2.98 28.6 200
NAO-WS [73] NeurIPS18 ✓ ✓ ✓ 3.53 2.5 0.3
NAO-Cutout [73] NeurIPS18 ✓ ✓ ✓ 2.11 128 200
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Table 2. On ImageNet, the performance comparison between the state-of-the-art NAS and mainstream
artificial networks. The search strategy adopted by the corresponding NAS is consistent with Table 1. Cutout
is an augment technology in [129].

Search mothed Reference Venue Top 1/Top 5
Acc(%)

Params
(Millions)

Image Size
(squarred) GPU Days

Human

Mobilenets [6] CoRR17 70.6/89.5 4.2 224 -
ResNeXt [138] CVPR17 80.9/95.6 83.6 320 -
Polynet [139] CVPR17 81.3/95.8 92.0 331 -
DPN [140] NIPS17 81.5/95.8 79.5 320 -
Shufflenet [137] CVPR18 70.9/89.8 5.0 224 -

RL

NASNet [31] CVPR18 82.7/96.2 88.9 331 2,000
NASNet-A [31] CVPR18 74.0/91.6 5.3 224 2,000
Block-QNN [32] CVPR18 77.4/93.5 N/A 224 96
Path-level EAS [56] ICML18 74.6/91.9 594 224 200
FPNAS [38] ICCV19 73.3/N/A 3.41 224 0.8

EA

GeNet [16] ICCV17 72.1/90.4 156 224 17
Hierarchical-EAS [33] ICLR18 79.7/94.8 64.0 299 300
AmoebaNet [42] AAAI19 82.8/96.1 86.7 331 3,150
AmoebaNet [42] AAAI19 83.9/96.6 469 331 3,150

GO

Understanding One-Shot Models [22] ICML18 75.2/N/A 11.9 224 N/A
SMASH [23] ICLR18 61.4/83.7 16.2 32 3
PARSEC [130] CoRR19 74.0/91.6 5.6 N/A 1
DARTS [17] ICLR19 73.3/91.3 4.7 224 4
SNAS [45] ICLR19 72.7/90.8 4.3 224 1.5
ProxylessNAS [103] ICLR19 75.1/92.5 N/A 224 8.33
GHN [90] ICLR19 73.0/91.3 6.1 224 0.84
SGAS [151] CVPR20 75.62/92.6 5.4 224 0.25
PC-DARTS (CIFAR10) [83] ICLR20 74.9/92.2 5.3 224 0.1
PC-DARTS (ImageNet) [83] ICLR20 75.8/92.7 5.3 224 3.8

RS Hierarchical-EAS Random [33] ICLR18 79.0/94.8 N/A 299 300

SMBO PNAS [36] ECCV18 74.2/91.9 5.1 224 225
PNAS [36] ECCV18 82.9/96.2 86.1 331 225

supernets, and there are many theoretical deficiencies in related research. Therefore, research
related to it is of great benefit to the development of NAS.

Early NAS was very close to people’s expectations for automatic network architecture design. For
example, Large-scale Evolution [15] uses an EA as a NAS search strategy, and emphasizes that once
network evolution begins, there is no need for manual participation. In the case of reducing human
interference as much as possible, let the algorithm autonomously determine the evolution direction
of the network. This is a good start, although the search performance at the time was not very
prominent. This is mainly because Large-scale Evolution emphasizes to reduce artificial restrictions
as much as possible, and evolve from the simplest single-layer network (as shown in Fig.3), which
requires that the population contains a sufficient number of individuals to evolve satisfactory results.
This means that the evolution process consumes a lot of computing resources, which relatively
increases the possibility of evolving a network structure that is free from human inherent thinking.
However, due to the limitations of evolutionary efficiency and huge search space, it is difficult to
evolve a network structure with outstanding performance. Therefore, subsequent NAS began to
discuss how to reduce the search space as much as possible while improving network performance.
NASNet [31] benefited from the idea of artificial network architecture design [4, 29, 30], and
proposed a modular search strategy that was widely adopted later. But obviously this comes at the
expense of the freedom of network architecture design. Although this modular search strategy does
greatly reduce the search cost, in reality we are not sure whether a better network architecture
has been ignored in the process of turning global search to modular search. This is also the main
reason why it is not certain that modular search is better than global search, and related research
is also lacking. In addition, the freedom of network architecture design and the search cost are
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a contradiction. How to balance the two and obtain good performance is an important research
direction in the future.

In addition, RobNet [150] proposes to use the NAS method to generate a large number of network
architectures by analyzing the differences between strong and poorly performing architectures
to find out which network structures help to obtain a robust network architecture. Inspired by
this, a feasible idea is to use a similar idea to RobNet in a search space with a higher degree of
freedom, analyze the common structural features between promising architectures and increase
their structural proportion in the search space. On the contrary, it reduces the proportion of the
common structural features of the architecture with poor performance in the search space, so as to
gradually reduce the search space in stages. Let the algorithm autonomously decide which network
structures to remove or add instead of artificially imposing constraints.
As analyzed in Section 4, another widely criticized issue of NAS is the lack of a corresponding

baseline and sharable experimental protocol, which makes it difficult to compare NAS search
algorithms with each other. Although RS has proven to be a strong baseline [24, 33, 104, 127],
relevant research is still insufficient. [24] pointed out that the performance of the current optimal
NAS algorithm is even only similar to the random strategy, which should arouse researchers’
vigilance. Therefore, more ablation experiments are needed, and researchers need to pay more
attention to which part of the NAS design leads to performance gains. Blindly stacking tricks to
increase performance should be criticized. Therefore, relevant theoretical analysis and reflection
are crucial to the future development of NAS. Another issue that needs attention is the widely used
parameter sharing strategy [19], although it effectively improves NAS search efficiency. But more
and more evidence shows that the parameter sharing strategy is likely to result in a sub-optimal
inaccurate candidate architecture ranking [21, 24, 25, 99]. This will make it almost impossible for
NAS to find the optimal network architecture in the search space. Therefore, relevant theoretical
research and improvements are expected. In addition, the current NAS is mainly focused on
improving the accuracy of image classification and reducing the search cost. NAS will play a greater
role in areas that require complex network architecture design, such as multi-object architecture
search, network transformation using NAS based on existing models, model compression, target
detection and segmentation and so on.
In short, the emergence of NAS is exciting. At present, NAS is still in the initial stage of devel-

opment, and more theoretical guidance and experimental analysis are needed. Finding out which
NAS designs lead to improved performance is critical to improving NAS. Want to use NAS to
completely replace the design of artificial network architecture requires more research and a more
solid theoretical basis. It takes a long way.
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