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Abstract

Knowledge distillation becomes a de facto standard to
improve the performance of small neural networks. Most of
the previous works propose to regress the representational
features from the teacher to the student in a one-to-one spa-
tial matching fashion. However, people tends to overlook
the fact that, due to the architecture differences, the seman-
tic information on the same spatial location usually vary.
This greatly undermines the underlying assumption of the
one-to-one distillation approach. To this end, we propose
a novel one-to-all spatial matching knowledge distillation
approach. Specifically, we allow each pixel of the teacher
feature to be distilled to all spatial locations of the stu-
dent features given its similarity, which is generated from
a target-aware transformer. Our approach surpasses the
state-of-the-art methods by a significant margin on vari-
ous computer vision benchmarks, such as ImageNet, Pascal
VOC and COCOStuff10k.

1. Introduction
Knowledge distillation [18, 28] refers to a simple tech-

nique to improve the performance of any machine learning
algorithms. One common scenario is to distill the knowl-
edge from a larger teacher neural network to a smaller
student one, such that the performance of student model
can be significantly boosted comparing to training the stu-
dent model alone. Concretely, people formulate an external
loss function that guides the student feature map to mimic
teacher’s. Recently, it has been applied to various down-
stream applications, such as model compression [39, 43],
continual learning [23], and semi-supervised learning [8].

Earlier works only distill the knowledge from the final
layer of neural networks, for example, the “logits” in image
classification task [1, 18]. Recently, people discover that
distilling the intermediate feature maps is a more effective
approach to boost the student’s performance. This line of
works encourage similar patterns to be elicited in the spa-
tial dimensions [33,45], and is constituted as state-of-the-art
knowledge distillation approach [7, 21].
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Figure 1. Illustration of semantic mismatch. Suppose that
teacher and student are the 3-layers and 2-layers convnets with
kernel size 3 × 3 and stride 1 × 1. (a) shows the receptive field
of the middle pixel of the final feature map, where the blue box
represents the teacher’s receptive field and the orange box is that
of the student’s. Since teacher’s model has more convolutional
operations, the resulting teacher feature map has a larger receptive
field thus contains richer semantic information. (b) Hence, directly
regressing the student and teacher’s feature in a one-to-one spatial
matching fashion may be suboptimal. (c) We proposed a one-to-all
knowledge distillation via a target-aware transformer that can let
the teacher’s spatial components be distilled to the entire student
feature maps.

To compute the distillation loss of the aforementioned
approach, one need to select the source feature map from
the teacher and the target feature map from the student,
where these two feature maps must have the same spatial
dimension. As shown in Figure 1 (b), the loss is computed
in a one-to-one spatial matching fashion, that is formulated
as a summation of the distance between the source and the
target features at each spatial location. One underlying as-
sumption of this approach is the spatial information of each
pixel is the same. In practice, this assumption is commonly
not valid due to the fact that student model usually has
fewer convolutional layers than the teacher. One example
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is shown in Figure 1 (a), even at the same spatial location,
the receptive field of student feature is often significantly
smaller than the teacher’s and thus contains less semantic
information. In addition, recent works [5, 10, 38, 44] evi-
dences the importance of receptive field’s influence on the
model representation power. Such discrepancy is a poten-
tial reason that the current one-to-one matching distillation
leads to sub-optimal results.

To this end, we propose a novel one-to-all spatial match-
ing knowledge distillation approach. In Figure 1 (c), our
method distills the teacher’s features at each spatial location
into all components of the student features through a para-
metric correlation, i.e., the distillation loss is a weighted
summation of all student components. To model such cor-
relation, we formulate a transformer structure that recon-
structs the corresponding individual component of the stu-
dent features and produces an alignment with the target
teacher feature. We dubbed this target-aware transformer.
As such, we use parametric correlations to measure the se-
mantic distance conditioned on the representational compo-
nents of student feature and teacher feature to control the
intensity of feature aggregation, which address the down-
side of one-to-one matching knowledge distillation.

As our method computes the correlation between feature
spatial locations, it might become intractable when feature
maps are large. To this end, we extend our pipeline in a
two-step hierarchical fashion: 1) instead of computing cor-
relation of all spatial locations, we split the feature maps
into several groups of patches, then performs the one-to-all
distillation within each group; 2) we further average the fea-
tures within a patch into a single vector to distill the knowl-
edge. This reduces the complexity of our approach by order
of magnitudes.

We evaluate the effectiveness of our method on two pop-
ular computer vision tasks, image classification and seman-
tic segmentation. On the ImageNet classification dataset,
the tiny ResNet18 student can be boosted from 70.04% to
72.41% in terms of the top-1 accuracy, and surpasses the
state-of-the-art knowledge distillation by 0.8%. As for the
segmentation task on COCOstuff10k, comparing to the pre-
vious approaches, our approach is able to boost the compact
MobilenetV2 architecture by 1.75% in terms of the mean
intersection of union (mIoU).

Our contributions can be summarized as follows:
• We propose the knowledge distillation via a target-aware

transformer, which enables the whole student to mimic
each spatial component of the teacher respectively. In this
way, we can increase the matching capability and subse-
quently improve the knowledge distillation performance.

• We propose the hierarchical distillation to transfer local
features along with global dependency instead of the orig-
inal feature maps. This allows us to apply the proposed
method to applications, which are suffered from heavy

computational burden because of the large size of feature
maps.

• We achieve state-of-the-art performance compared
against related alternatives on multiple computer vision
tasks by applying our distillation framework.

2. Related Works

The seminal work [18] introduced the idea of knowledge
distillation. Specifically, Hinton et al. proposed to distill
the logits (before sotfmax layer) from teacher to student by
minimizing the KL divergence, where a temperature factor
is applied to soften the logits.

Since feature map contains richer representation,
Romero et al. [33] introduced the intermediate layer trans-
fer between teacher and student. Lately, AT [45] proposed
several statistical methods to highlight the dominating area
of the feature map and discarded low-response area as noise.
Chen et al. [3] proposed the semantic calibration which al-
lowed the student to learn from the most semantic-related
teacher layer. In [21], the feature similarities between
teacher and student were calculated and then were used
as weights to balance the feature matching. These early
methods intuitively established the links between knowl-
edge source (teacher) and distillation terminal (student) in
the one-to-one manner by spatial order. However, they over-
estimated the prior of spatial order while neglected the is-
sues of semantic mismatch, i.e., the pixels of teacher fea-
ture map often contains richer semantic compared to that of
student on the same spatial location. We found that some
works [19,25,30–32,40,43], though unintended, have been
proposed to relax the spatial constrain during feature trans-
fer. Typically, they defined the relational graph, and sim-
ilarity matrix in the feature space of teacher network and
transferred it to the student network. For instances, Tung
and Mori [40] calculated the similarity matrix where each
entry encoded the similarity between two instances. Liu
et al. [25] measured the correlation between channels by
inner-product. They condensed and compressed the entire
feature to some properties (often scalar) and thus collapsed
the spatial information. On the other, such process damaged
the original teacher feature and may lead to sub-optimal so-
lution.

The spread of KD has also driven some methods de-
signed for specific vision tasks including video caption-
ing [29], action recognition [9, 41], object detection [4, 11,
46] and semantic segmentation [16, 26, 42]. Regarding the
semantic segmentation, these methods are indeed related to
relation knowledge distillation which computes similarity
matrix [40]. To investigate the potential of our method, we
also adapt the method to semantic segmentation with hier-
archical distillation.
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Figure 2. Illustration of our framework. (a) Target-aware Transformer. Conditioned on the teacher feature and the student feature, the
transformation map Corre. is computed and then applied on the student feature to reconfigure itself, which is then asked to minimize
the L2 loss with the corresponding teacher feature. (b) Patch-group Distillation. Both teacher and student features are to be sliced and
rearranged as groups for distillation. By concatenating the patches within a group, we explicitly introduce the spatial correlation among the
patches beyond the patches themselves. (c) Anchor-point Distillation. Each color indicates a region. We use average pooling to extract
the anchor within a local area of the given feature map, forming the new feature map of a smaller size. The generated anchor-point features
will participate in the distillation.

3. Method

In this section, we first briefly describe the fundamen-
tal elements of feature map knowledge distillation and then
introduce the general formulation of our knowledge distil-
lation via a target-aware transformer. As our method com-
putes the point-wise correlation of the given feature maps,
the computational complexity becomes intractable on large-
scale features, we then introduce the hierarchical distillation
approach to address this limitation.

3.1. Formulation

Suppose the teacher and the student are two convo-
lutional neural networks, denoted by T and S. FT ∈
RH×W×C and FS ∈ RH×W×C

′

denote the teacher feature
and student feature respectively, where H and W are the
height and width of the feature map, and C represents the
channel numbers. In the pioneer work [18], the distillation
loss is formulated by a distance of features that come from
the last layer of the network. For example, in the image
classification domain, it refers to the “logits” before going
in the softmax layer and cross-entropy loss. Concretely, the
vanilla distillation loss is defined as:

LKL = KLD(σ(
T (x)

τ
), σ(

S(x)

τ
)), (1)

where KLD(·) measures the Kullback-Leibler divergence,
σ(·) is the softmax function, T (x) and S(x) are the output
logits given specific input x, and τ is the temperature factor.
Without loss of generality, we assume that C

′
aligns with C

and reshape both FT and FS into 2D matrices:

fs = Γ(FS) ∈ RN×C ,

f t = Γ(FT ) ∈ RN×C .
(2)

Here Γ(·) is a function that flattens the 3D feature tensor
into the 2D matrix where each row of the matrix is associ-
ated with a pixel in the feature tensor by spatial order and
N = H ×W . We can describe fs and f t as two sets of the
pixels with cardinality N :

fs> = [fs1 , f
s
2 , f

s
3 , . . . , f

s
N ],

f t
>

= [f t1, f
t
2, f

t
3, . . . , f

t
N ].

(3)

Previous work [33] simply minimize the discrepancy be-
tween two sets fs and f t in a one-to-one spatial matching
manner, we denote this approach feature matching (FM):

LFM = ||FS − FT ||2 =

N∑
i=1

||fsi − f ti ||2. (4)

This formulation assumes that the semantic distributions of
the teacher and the student match exactly. However, as men-
tioned earlier, for the feature maps of the teacher network,
which usually encompasses more layers and larger feature
channels, the spatial information of the same pixel location
contains a richer semantic information compare to the stu-
dent network. Directly regressing the features in a pixel-
wise manner may lead to suboptimal distillation results.

To this end, we propose a one-to-all spatial matching
knowledge distillation pipeline that allows the each feature
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location of the teacher can teach the entire student features
in a dynamic manner. To make the whole student mimic
a spatial component of the teacher, we propose the Target-
aware Transformer (TaT) to pixel-wisely reconfigure the
semantic of student feature in the certain position. Given a
spatial component (alignment target) of the teacher, we use
TaT to guide the whole student to reconstruct the feature in
its corresponding location. Conditioned on the alignment
target, TaT should reflect the semantic similarity with the
components of the student feature. We use a linear operator
to avoid changing the distribution of student semantics. The
formulation of transformation operator W i can be defined
as:

W i = σ(〈fs1 , f ti 〉, 〈fs1 , f ti 〉, . . . , 〈fsN , f ti 〉)
= [wi

1, w
i
2, . . . , w

i
N ],

(5)

where f ti and fsi denote the corresponding i-th components
of teacher and student, 〈·, ·〉 represents the inner-product
and ‖W i‖ = 1. We use inner-product to measure the
semantic distance and softmax function for normalization.
Each entry of W i is like the gate and controls the amount
of semantic that will be propagated to the i-th reconfigured
point. By aggregating the these related semantic across all
the components, we have the result:

fsi
′

= wi
1 × fs1 + wi

2 × fs2 + · · ·+ wi
N × fsN . (6)

The Eq. 5 and Eq. 6 can be combined and rewritten as the
form of matrix multiplication: fsi

′
= σ(fs · f ti ) · fs.

Note this is the simple non-parametric method that only
depends on the original features. To facilitate the training,
we introduce the parametric method with the extra linear
transformation applied on the student feature and teacher
feature. We observe that parametric version performs better
than non-parametric one in ablation study. Guided by the
target-aware transformer, the reconfigured student feature
can be formulated as:

fs
′

= σ(γ(fs) · θ(f t)>) · φ(fs), (7)

where θ(·), γ(·) and φ(·) are the linear functions consisting
of 1 × 1 conv layer plus the BN layer [20]. We compare
the parametric TaT to non-parametric one to analyse the
effectiveness brought by these linear functions in the Sec-
tion 4.5. In the case that the channel numbers of FS do not
match with that of FT , γ(·) can help with alignment.

After reconfiguration, each component of fs
′

aggregates
the meaningful semantic from the original feature, which
enhances the expressivity. We do not require the student to
reconstruct the teacher feature in a pixel-to-pixel manner.
Indeed, our model allows the student to act as a whole to
mimic the teacher. The resulting fs

′
is lately asked to min-

imize the L2 loss with the teacher feature. The objective for
TaT knowledge distillation can be given by:

LTaT = ||fs
′
− f t||2. (8)

Finally, the total loss of our proposed method can be de-
fined by:

L = αLTask + βLKL + εLTaT, (9)

Here LTask can be any loss on the generic machine learn-
ing tasks. α, β and ε are the weight factors to balance
the loss. Empirically, we find that our model benefits from
LKL. However, the model can achieve state-of-the-art with-
out the help of LKL.

3.2. Hierarchical Distillation

The proposed TaT lift the limitation of previous one-to-
one spatial matching fashion. However, the computation
complexity of TaT map will become intractable when it
comes to a large feature map. Assuming the spatial dimen-
sions of the feature map are H and W , this means the com-
putation complexity will reach O(H2 · W 2). Therefore,
we propose a hierarchical distillation approach to address
this large feature map limitation. It contains two steps: 1)
patch-group distillation that splits the entire feature maps
into smaller patches, so to distill local information from the
teacher to the student; 2) we further summarize the local
patches into one vector and distill this for global informa-
tion.

3.2.1 Patch-group Distillation

As mentioned above, as the spatial dimension of input fea-
ture maps increases, distillation becomes more difficult. A
straightforward solution [25] is to divide the feature map
into patches and perform distillation within patches indi-
vidually. However, the correlation between patches is com-
pletely ignored, resulting in sub-optimal solutions.

In contrast to Liu et al. [25], we propose the patch-group
distillation (See Figure 2 (b)) that allows the student to learn
the local feature from patches and retain the correlation
among them to some extent. Given the original student fea-
ture FS and teacher feature FT , they are partitioned into
n×m patches of size h×w, where h = H/n, w = W/m.
They are further arranged as g groups sequentially where
each group contains p = n · m/g patches. Specifically,
the patches in a group will be concatenated channel-wisely,
forming a new tensor of size h × w × c · g that would be
used for distillation lately. In this way, each pixel of the new
tensor contains the features from p positions of the original
feature, which explicitly includes the spatial pattern. There-
fore, during the distillation, the student can learn not only
the single pixel but the correlation among them. Intuitively,
a larger group will introduce richer correlation but complex
correlation will turn to difficult to learn. We study the ef-
fectiveness of different group sizes in the experiments.

Similar to the formulation presented in Section 3.1, the
patch-group distillation can be given by simply replacing
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the original input with the reorganized one, and the variant
is denoted as LPTaT. To relax the strict constraints of the
spatial pattern in the patch-group, we set the θ(·) as linear
transformation in our experiments.

3.2.2 Anchor-point Distillation

The patch-group distillation can learn the fined-grained fea-
ture on the patch level and retain the spatial correlation
among the patches to some extent. However, it is not ca-
pable of perceiving the long-range dependency. As will see
in the ablation study, the attempt to preserve the global cor-
relation through concatenating all the patches would fail.
Furthermore, a large feature map will hinder the induc-
tive bias since it may encourage the student to integrate
the less relevant semantic from remote positions by mis-
take, which may deteriorate the subsequent distillation per-
formance. For complex scenes, long-range dependency is
important to capture the relation (e.g. layout) of different
objects.

We address the conundrum by the proposed anchor-point
distillation. As shown in Figure 2 (c), we summarize the
local area to compact representation, referred to anchor,
within a local area that is representative to describe the se-
mantic of the given area, forming the new feature map of
smaller size. Since the new feature map consists of the sum-
mary of the original feature, it can approximately substitute
the original one to obtain the global dependency. We simply
use average pooling to extract the anchor points. Then all
the anchors are scattered back to the associated position to
form a new feature map. The anchor-point feature is used
for distillation as described in Section 3.1 and the objective
is denoted as LATaT. The patch-group distillation enables
the student to mimic the local feature while the anchor-point
distillation allows the student to learn the global representa-
tion over the coarse anchor-point feature, which are comple-
mentary to each other. Therefore, the combination of these
two objectives can bring the best of two worlds. Our ob-
jective designed for semantic segmentation can be written
by:

LSeg = αLCE + δLPTaT + ζLATaT (10)

4. Experiment
In this section, we empirically evaluate the effectiveness

of the proposed method through extensive experiments.
On image classification, we leverage the commonly used
benchmark in knowledge distillation such as Cifar-100 [22]
and ImageNet [12], and show our model can improve the
student performance by a significant margin compared to
many state-of-the-art baselines. In addition, we extend our
method to another popular computer vision task, semantic
segmentation to further demonstrate the generalization abil-

ity of our method. We nonetheless provide a detailed abla-
tion study in the end of this section.

4.1. Datasets

Cifar-100 [22]. This benchmark contains 100 categories
including 600 samples each. For each category, there are
500 images for training while 100 images for testing. We
report top-1 accuracy as evaluation metric.
ImageNet [12]. This is a challenging benchmark for image
classification including more than one million training sam-
ples with 1,000 categories. Similarly, we report the top-1
accuracy to measure the model performances.
Pascal VOC [13]. This benchmark contains 20 foreground
classes with a background class. It provides 1,464 training,
1,499 validation, and 1,456 testing samples. Apart from the
fine annotated samples, we also use additional coarse an-
notated images from [14] for training, resulting in 10,582
training samples. We report the mean Intersection over
Union (mIoU) on the validation set to measure the proposed
method.
COCOStuff10k [2]. The challenging dataset is developed
on MSCOCO [24] by adding dense pixel-wise stuff label,
resulting in 172 classes: 80 for thing, 91 for stuff, and 1 for
unlabeled. It contains 9k training samples and 1k validation
samples. We report the mIoU to evaluate our method.

4.2. Implementation Details

Image classification. For the experiments on Cifar-100, we
use SGD optimizer [37] and the total running epoch is set
to 240. The initial learning rate is 0.05 with a decay rate
0.1 at epoch 150, 180, and 210. In terms of data augmenta-
tion, the input images will be randomly cropped and flipped
horizontally. We use Bayesian optimization [36] for hyper-
parameters (i.e. α and ε in Eq. 9) searching. We report the
exact values in the supplementary materials. For the Ima-
geNet experiments, we use the AdamW optimizer [27] and
train all of the models for 100 epochs with a batch size of
2048. The initial learning rate is set to 1.6e-4 and decay by
0.1 at epoch 30, 60, and 90. We apply standard data aug-
mentations including random crop and horizontal flip. We
use a simple grid search on the hyper-parameters, and set
α=0.5, β=0.5 and ε=0.1 in Eq. 9.
Semantic segmentation. We choose the DeepLabV3+ [6]
as the base architecture, where it contains a backbone to ex-
tract feature and a head to generate the segmentation results.
For the teacher, we follow [6] to use the ResNet101 as the
backbone model. For the student, we select two networks,
ResNet18 which shares a similar architecture design as the
backbone, and MobileNetV2 [34] which is drastically dif-
ferent.

We use random flip and Gaussian blur for data augmen-
tation. The samples are randomly cropped and rescaled to
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Table 1. Top-1 accuracy(%) on Cifar-100. The loss term LKL in Eq. 9 is removed in this experiment.

Method
Network Architecture

WRN-40-2 WRN-40-2 ResNet56 ResNet110 ResNet110 ResNet32×4 VGG13
WRN-16-2 WRN-40-1 ResNet20 ResNet20 ResNet32 ResNet8×4 VGG8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Vanilla 73.26 71.98 69.06 69.06 71.14 72.50 70.36
KD [18] 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet [33] 73.58 72.24 69.21 68.99 71.06 73.50 71.02
AT [45] 74.08 72.77 70.55 70.22 72.31 73.44 71.43
SP [40] 73.83 72.43 69.67 70.04 72.69 72.94 72.68
CC [32] 73.56 72.21 69.63 69.48 71.48 72.97 70.71
RKD [30] 73.35 72.22 69.61 69.25 71.82 71.90 71.48
PKT [31] 74.54 73.45 70.34 70.25 72.61 73.64 72.88
FSP [43] 72.91 NA 69.95 70.11 71.89 72.62 70.20
NST [19] 73.68 72.24 69.60 69.53 71.96 73.30 71.53
CRD [39] 75.48 74.14 71.16 71.46 73.48 75.51 73.94
ICKD [25] 75.64 74.33 71.76 71.68 73.89 75.25 73.42

Ours w/o LKL 76.06 74.97 71.59 71.70 74.05 75.89 74.39

513×513 during the training and are resized to the same res-
olution during the testing. The student backbone ResNet18
is trained for 100 epochs with an initial learning rate 7e-
3 on the Pascal VOC and 1e-2 on COCOStuff10k respec-
tively. For MobileNetV2, the learning rate is set to 7e-3 for
all datasets. We incorporate the cosine learning rate sched-
uler for all experiments.

4.3. Image Classification

Results on Cifar-100. To show the generalization ability of
our method, we applied our distillation approach to various
network architectures, including ResNet [15], VGG [35]
and WideResNet [44]. And in these experiments, we set
θ(·) as an identical function instead of linear transformation,
e.g., Conv+BN. As shown in Table 1, our method surpasses
all baselines on six out of seven teacher-student settings,
often by a significant margin. This evidences the effective-
ness and generalization ability of our approach. Compared
to the closest baseline, FitNet [33], which directly computes
the distillation loss in one-to-one fashion, our approach im-
proves on average 2.72%. The results when distilling to
ResNet20 is interesting. In this case, using a less power-
ful teacher, ResNet56, results a better student performance
on average comparing to using ResNet110. In particular,
directly distilling the feature in one-to-one fashion deteri-
orates the student’s performance compared to vanilla train-
ing. Our distillation approach addressed such mismatch and
achieves 71.70% which is 2.64% better than the baseline.

Results on ImageNet. Since Cifar-100 only contains
50,000 training images, we further evaluate our approach

on a more challenging dataset. Here, we choose ResNet34
and ResNet18 as teacher and student model respectively.
We show the Top-1 accuracy of the student and teacher
model in Table 2. Our method outperforms the state-of-
the-art methods by a significant margin. Notice that, even
without the help of LKL, our model can reach 72.07% on a
tiny ResNet18, comparing to some methods which rely on
the LKL by more than 1%. When enabling LKL, the pro-
posed method can further improve the Top-1 accuracy of
the student to 72.41%. Compared to SCKD [3] which uses
an attention mechanism to re-allocate the most semantic-
related teacher layers to the student, our method has a sig-
nificant improvement. That means even matching two lay-
ers of teacher and student with similar semantics, the stu-
dent may not be able to catch up with the teacher in the
pixel-to-pixel manner due to semantic mismatch. In con-
trast, our method leverages a target-aware transformer, to
address the semantic mismatch in a more efficient manner.

4.4. Semantic Segmentation

As the feature map size is fairly small when performing
distillation on image classification, we plan to further inves-
tigate the generalization ability of our method on semantic
segmentation, where the feature size is drastically larger. As
in Section 3.2, we adapt our TaT method with the patch-
group and anchor-point scheme. We select two popular
benchmarks, Pascal VOC and COCOStuff10k, and present
the results in Table 3 and Table 5 respectively. Our method
clearly surpasses all baselines by a clear margin. For in-
stance, on Pascal VOC, the proposed model can improve
the MobileNetV2 by more than 5%, which shows great po-
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Table 2. Top-1 Accuracy(%) on ImageNet validation set. The ResNet34 is employed as the teacher backbone and the ResNet18 is selected
as the student backbone. Our method can boost the performance of the tiny ResNet18 beyond 72% and outperforms other methods without
LKL.

Method Vanilla AT [45] CRD [39] SAD [21] ICKD [25] KR [7] Ours KD [18] SCKD [3] CC [32] RKD [30] Ours Teacher

w/ LKL X X X X X -
Top-1 70.04 70.59 71.17 71.38 71.59 71.61 72.07 70.68 70.87 70.74 71.34 72.41 73.31

Table 3. Comparing the semantic segmentation results (in
mIoU%) of different methods on Pascal VOC. We can ob-
serve that our method surpasses all previous baselines by a sig-
nificant margin, specifically, on the popular compact architecture
MobilenetV2, our method improves the student by 5.39% com-
paring to the stand-alone training, and by 1.06% comparing to the
state-of-the-art method ICKD. † indicates reproducing by training
100 epochs, using the official released code.

ResNet18 MobilenetV2

Student 72.07 68.46
KD [18] 73.74 71.73
AT [45] 73.01 71.39
FitNet [33] 73.31 69.23
Overhaul† [17] 73.98 72.30
ICKD [25] 75.01 72.79
Ours 75.76 73.85

Table 4. Non-parametric vs. parametric implementation of target-
aware transformer on ImageNet, where check mark indicates ap-
plying linear function.

θ(·) γ(·) Top-1 Acc.

72.22
X 72.41

X X 72.35

Table 5. Comparing the semantic segmentation results (in
mIoU%) of different methods on COCOStuff10k. As most
baselines do not provide the code on the COCO dataset except
KR, we only compare our method to KR in this case. We repro-
duce the baseline using the official code with the same training
procedure. Our method surpasses the baseline by nearly 2%, and
further demonstrate the effectiveness of our approach.

Sutdent KR [7] Our Teacher

ResNet18 26.33 26.73 28.75 33.10
MobilenetV2 26.29 26.63 28.05 33.10

tential to unlock the hardware limitation. On the challeng-
ing benchmark COCOStuff10k, the model can improve the
ResNet18 and MobileNetV2 by 2.42% and 1.76%.

Table 6. Impact of function θ(·) on a variety of network archi-
tectures. We report the top-1 accuracy on Cifar-100. id indicates
for identity mapping.

Teacher Student Conv+BN id

ResNet56 ResNet20 71.45 71.59
ResNet110 ResNet20 71.68 71.70
ResNet110 ResNet32 73.75 74.05
ResNet32×4 ResNet8×4 75.30 75.89
VGG13 VGG8 73.48 74.39

71.43
71.58

71.71

71.91
71.8271.82

71.94
72.07

71.9571.95

71.3

71.5

71.7

71.9

72.1

72.3

0.05 0.08 0.09 0.10 0.11 0.12 0.15 0.20 0.21 0.25

To
p-
1
A
C
C
.

𝜖

Figure 3. The performance of our model under different ε on Ima-
geNet. Here the loss LKL is removed and α is set to 0.1.

4.5. Ablation Study

Here, we provide detailed ablation study to validate each
component of our approach.

Linear transformation functions. We first study the im-
pact of function θ(·). We are interested in that if the learn-
ing target (i.e. teacher feature) is fixed, can the student adapt
itself through target-aware transformer better? We com-
pare different settings of θ(·) including identical mapping
against Conv+BN. The result on Cifar100 is presented on
Table 6. Surprisingly, the identical mapping for θ(·) always
performs better.

We further investigate the non-parametric implementa-
tion by setting both θ(·) and γ(·) as identical mapping
on ImageNet (Table 4). The result shows that the semi-
parametric version performs best, where the fixed teacher
and the linear transformation applying to student feature can
facilitate the student to reconfigure itself.

Validating ε. To investigate the efficacy brought by the pro-
posed Eq. 8, we then further explore the different settings
of the coefficient ε used in Eq. 9 (See Figure 3). When
increased from 0.05 to 0.25, the objective LTaT can bring
positive and stable effect.
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Table 7. Contribution of patch-group and anchor-point distillation.
We observe that patch-group distillation presents more efficacy.

Patch-group Anchor-point mIoU

X X 75.76
X 75.63

X 75.37

Table 8. Performance (%) of anchor-point distillation on Pascal
VOC under different pooling kernel sizes.

Pooling kernel 2× 2 4× 4 8× 8 16× 16
Speed up (×) 16 256 4096 65536
mIoU 75.37 75.27 74.79 74.56

We also conduct the thorough experiments to understand
the contribution brought by the proposed patch-group dis-
tillation LPTaT and anchor-point distillation LATaT. As dis-
cussed previously, LATaT is proposed to learn the global rep-
resentation to capture long-range dependency whileLPTaT is
designed to concentrate on local feature. By covering each
one of them, the individual effectiveness of the two com-
ponents can be examined. As shown in Table. 7, both ob-
jectives can improve the vanilla student significantly while
LPTaT presents more efficacy. The combination of both com-
ponents achieves the best performance, demonstrating that
the two proposed objectives are complementary.

Validating the anchor-point distillation. Then, we give
more insight concerning the proposed objectives’ function-
ality through sensitivity analysis. Specifically, we investi-
gate the hyper-parameters that would influence the behavior
of the training process. In terms of the anchor-point distilla-
tion, this work utilizes average pooling to extract the anchor
in a local area from the original feature, forming the associ-
ated anchor-point feature. It is a trade-off between reducing
computation overhead and summarizing fine-grained spa-
tial information since a bigger kernel would reduce feature
size along with more informative representation, e.g., when
feature map size is reduced to 1× 1, it degrades to ignoring
the spatial information and posing one-to-one fashion dis-
tillation. Thus we study the pooling kernel size that directly
yields different feature resolutions. The result exhibited in
Table 8 shows that the amount of distillation calculation is
greatly reduced with the increasing pooling size. On the
other hand, excessive pooling range would omit useful and
informative representation and damage the performance.

Validating the patch-group distillation. Next we analyze
the two key factors of patch-group distillation, i.e. patch
size h × w and groups g. In Table 9, we found that gen-
erally, smaller patch size is advantageous to patch-group
distillation and overlarge patch size, however, may be un-

Table 9. Performance (%) of patch-group distillation on Pascal
VOC under different settings of patch size (h × w). Groups is
equal to patches g = n×m.

Patch size 32×32 16×16 8×8 4×4
mIoU 75.33 75.45 75.50 75.47

Table 10. Performance (%) of patch-group distillation on Pascal
VOC under different settings of groups where patch size is 8 × 8
and patch numbers is 256.

Groups 1 32 64 128 256
mIoU 75.26 75.57 75.63 75.62 75.50

favourable since it approaches the original feature. Regard-
ing the groups, it merges the patches as a group for joint
distillation. In the experiment shown in Table 10, the patch
size is set to 8 × 8, which divides the original feature map
into 128/8 ∗ 128/8 = 256 patches. There are two extreme
situations. When only one group is used, it indicates that all
of the patches will be distilled jointly. On the contrary, us-
ing 256 groups means each patch is distilled individually. In
this example, we found that 4 patches as a group can reach
the best performance.

5. Conclusion
This work develops a framework for knowledge distilla-

tion through a target-aware transformation that enables the
student to aggregate the useful semantic over itself to en-
hance the expressivity of each pixel, which allows the stu-
dent to act as a whole to mimic the teacher rather than min-
imize each partial divergence in parallel. Our method is
successfully extended to semantic segmentation by the pro-
posed hierarchical distillation consisting of patch-group and
anchor-point distillation, designed to focus on local feature
and long-range dependency. We conduct thorough exper-
iments to validate the effectiveness of the method and ad-
vance the state-of-the-art.

6. Discussion
Potential negative societal impact. Our method has no

ethical risk on dataset usage and privacy violation as all the
benchmarks are public and transparent.

Limitations. There are some issues of interest that we
would like to explore in the future: (1) Currently, we only
select the last layer of the backbone network for distilla-
tion. It would be interesting to see the efficacy when multi-
ple layers are get involved with distillation which has been
explored by some works [7, 45]. (2) Also, we didn’t in-
vestigate the effectiveness on other applications like object
detection, which may need to design the new objective to fit
the nature of specific application.
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Subhransu Maji, and Jitendra Malik. Semantic contours from

inverse detectors. 2011 International Conference on Com-
puter Vision, pages 991–998, 2011. 5

[15] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016. 6

[16] Tong He, Chunhua Shen, Zhi Tian, Dong Gong, Changming
Sun, and Youliang Yan. Knowledge adaptation for efficient
semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 578–587, 2019. 2

[17] Byeongho Heo, Jeesoo Kim, Sangdoo Yun, H. Park, N.
Kwak, and J. Choi. A comprehensive overhaul of feature
distillation. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 1921–1930, 2019. 7

[18] Geoffrey E. Hinton, Oriol Vinyals, and J. Dean. Distilling
the knowledge in a neural network. ArXiv, abs/1503.02531,
2015. 1, 2, 3, 6, 7

[19] Zehao Huang and Naiyan Wang. Like what you like: Knowl-
edge distill via neuron selectivity transfer. arXiv preprint
arXiv:1707.01219, 2017. 2, 6

[20] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. PMLR, 2015. 4

[21] Mingi Ji, Byeongho Heo, and S. Park. Show, attend and
distill: Knowledge distillation via attention-based feature
matching. ArXiv, abs/2102.02973, 2021. 1, 2, 7

[22] Alex Krizhevsky. Learning multiple layers of features from
tiny images. tech report, 2009. 5

[23] Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE Trans. Pattern Anal. Mach. Intell., 40(12):2935–2947,
2018. 1

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 5

[25] Li Liu, Qingle Huang, Sihao Lin, Hongwei Xie, Bing Wang,
Xiaojun Chang, and Xiaodan Liang. Exploring inter-channel
correlation for diversity-preserved knowledge distillation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 8271–8280, October 2021.
2, 4, 6, 7

[26] Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo Luo,
and Jingdong Wang. Structured knowledge distillation for
semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2604–2613, 2019. 2

[27] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 5

[28] Asit K. Mishra and Debbie Marr. Apprentice: Using knowl-
edge distillation techniques to improve low-precision net-
work accuracy. In ICLR, 2018. 1

[29] Boxiao Pan, Haoye Cai, De-An Huang, Kuan-Hui Lee,
Adrien Gaidon, Ehsan Adeli, and Juan Carlos Niebles.
Spatio-temporal graph for video captioning with knowledge

9



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

CVPR
#7432

CVPR
#7432

CVPR 2022 Submission #7432. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

distillation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10870–
10879, 2020. 2

[30] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Re-
lational knowledge distillation. 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3962–3971, 2019. 2, 6, 7

[31] N. Passalis and A. Tefas. Learning deep representations with
probabilistic knowledge transfer. In ECCV, 2018. 2, 6

[32] Baoyun Peng, Xiao Jin, Jiaheng Liu, Shunfeng Zhou, Y. Wu,
Y. Liu, Dong sheng Li, and Z. Zhang. Correlation congru-
ence for knowledge distillation. 2019 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 5006–
5015, 2019. 2, 6, 7

[33] A. Romero, Nicolas Ballas, S. Kahou, Antoine Chassang, C.
Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets.
CoRR, abs/1412.6550, 2015. 1, 2, 3, 6, 7

[34] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 5

[35] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 6

[36] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Prac-
tical bayesian optimization of machine learning algorithms.
Advances in neural information processing systems, 25,
2012. 5

[37] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the importance of initialization and momentum
in deep learning. In International conference on machine
learning, pages 1139–1147. PMLR, 2013. 5

[38] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.
2

[39] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive representation distillation. ICLR, 2020. 1, 6, 7

[40] F. Tung and G. Mori. Similarity-preserving knowledge dis-
tillation. 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 1365–1374, 2019. 2, 6

[41] Xionghui Wang, Jian-Fang Hu, Jian-Huang Lai, Jianguo
Zhang, and Wei-Shi Zheng. Progressive teacher-student
learning for early action prediction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3556–3565, 2019. 2

[42] Yukang Wang, W. Zhou, T. Jiang, X. Bai, and Yongchao Xu.
Intra-class feature variation distillation for semantic segmen-
tation. In ECCV, 2020. 2

[43] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A
gift from knowledge distillation: Fast optimization, network
minimization and transfer learning. 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
7130–7138, 2017. 1, 2, 6

[44] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. ArXiv, abs/1605.07146, 2016. 2, 6

[45] Sergey Zagoruyko and Nikos Komodakis. Paying more
attention to attention: Improving the performance of con-
volutional neural networks via attention transfer. ArXiv,
abs/1612.03928, 2017. 1, 2, 6, 7, 8

[46] Linfeng Zhang and Kaisheng Ma. Improve object detec-
tion with feature-based knowledge distillation: Towards ac-
curate and efficient detectors. In International Conference
on Learning Representations, 2020. 2

10


	. Introduction
	. Related Works
	. Method
	. Formulation
	. Hierarchical Distillation
	Patch-group Distillation
	Anchor-point Distillation


	. Experiment
	. Datasets
	. Implementation Details
	. Image Classification
	. Semantic Segmentation
	. Ablation Study

	. Conclusion
	. Discussion

