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Abstract

Learning spatial-temporal relation among multiple ac-
tors is crucial for group activity recognition. Different
group activities often show the diversified interactions be-
tween actors in the video. Hence, it is often difficult
to model complex group activities from a single view of
spatial-temporal actor evolution. To tackle this problem,
we propose a distinct Dual-path Actor Interaction (Dual-
AI) framework, which flexibly arranges spatial and tempo-
ral transformers in two complementary orders, enhancing
actor relations by integrating merits from different spatio-
temporal paths. Moreover, we introduce a novel Multi-scale
Actor Contrastive Loss (MAC-Loss) between two interac-
tive paths of Dual-AI. Via self-supervised actor consistency
in both frame and video levels, MAC-Loss can effectively
distinguish individual actor representations to reduce ac-
tion confusion among different actors. Consequently, our
Dual-AI can boost group activity recognition by fusing such
discriminative features of different actors. To evaluate the
proposed approach, we conduct extensive experiments on
the widely used benchmarks, including Volleyball [21], Col-
lective Activity [12], and NBA datasets [47]. The proposed
Dual-AI achieves state-of-the-art performance on all these
datasets. It is worth noting the proposed Dual-AI with 50%
training data outperforms a number of recent approaches
with 100% training data. This confirms the generalization
power of Dual-AI for group activity recognition, even under
the challenging scenarios of limited supervision.

1. Introduction
Group Activity Recognition (GAR) is an important prob-

lem in video understanding. In this task, we should not only
recognize individual action of each actor but also under-
stand collective activity of multiple involved actors. Hence,
it is vital to learn spatio-temporal actor relations for GAR
[44, 47, 49].

Several attempts have been proposed to model actor re-
lations by building visual attention among actors [6, 17, 19,
24,44,47,49]. However, it is often difficult for joint spatial-
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Figure 1. Accuracy per Category and Example of left spike and
right set group activity. Red dashed line and Violet dashed line be-
low show spatial and temporal actor interaction respectively. With
spatial and temporal modeling applied in different orders, ST path
and TS path learn different spatiotemporal patterns and thereby are
skilled at different classes, supported by the accuracy plot.

temporal optimization [8, 35]. For this reason, the recent
approaches in group activity recognition often decompose
spatial-temporal attention separately for modeling actor in-
teraction [17, 24, 47]. But single order of space and time is
insufficient to describe complex group activities, due to the
fact that different group activities often exhibit diversified
spatio-temporal interactions.

For example, Fig. 1 (a) refers to the l-spike activity in
the volleyball, where the hitting player (actor 1) and the de-
fending player (actor 4) move fast to hit and block the ball,
while other accompanying players (e.g., actor 2 and actor
3) stand without much movement. Hence, for this group ac-
tivity, it is better to first understand temporal dynamics of
each actor, and then reason spatial interaction among actors
in the scene. On the contrary, Fig. 1 (b) refers to the r-set
activity in the volleyball, where most players in the right-
side team are moving cooperatively to tackle the ball falling
on different positions, e.g., actor 1 jumps and sets the ball,
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while actor 2 jumps together to make a fake spiking action.
Hence, for this group activity, it is better to reason spatial
actor interaction first to understand the action scene, and
then model temporal evolutions of each actor. In fact, as
shown in the accuracy plot of Fig. 1, the order of space and
time interaction varies for different activity categories.

Based on these observations, we propose a distinct
Dual-path Actor Interaction (Dual-AI) framework for GAR,
which can effectively integrate two complementary spa-
tiotemporal views to learn complex actor relations in
videos. Specifically, Dual-AI consists of Spatial-Temporal
(ST) and Temporal-Spatial (TS) Interaction Paths, with as-
sistance of spatial and temporal transformers. ST path first
takes spatial transformer to capture spatial relation among
actors in each frame, and then utilizes temporal transformer
to model temporal evolution of each actor over frames. Al-
ternatively, TS path arranges spatial and temporal trans-
formers in a reverse order to describe complementary pat-
tern of actor interaction. In this case, our Dual-AI can
comprehensively leverage both paths to generate robust spa-
tiotemporal contexts for boosting GAR.

Furthermore, we introduce a novel Multi-scale Actor
Contrastive Loss (MAC-Loss), which is a concise but ef-
fective self-supervised signal to enhance actor consistency
between two paths. Via such actor supervision in all the
frame-frame, frame-video, video-video levels, we can fur-
ther reduce action confusion between any two individual
actors to improve the discriminative power of actor repre-
sentations in GAR.

Finally, we conduct extensive experiments on the
widely-used benchmarks to evaluate our designs. Our Dual-
AI simply achieves state-of-the-art performance on all the
fully-annotated datasets, such as Volleyball, Collective Ac-
tivity. More interestingly, our Dual-AI with 50% training
data is competitive to a number of recent approaches with
100% training data in Volleyball as shown in Fig. 2, which
clearly demonstrates the generalization power of our Dual-
AI. Motivated by this, we further investigate the challenging
setting with limited actor supervision [47], where Dual-AI
also achieves state-of-the-art results on Weak-Volleyball-M
and NBA datasets. All these results show the effectiveness
of our Dual AI for learning spatiotemporal actor relations in
GAR.

2. Related Work
Group activity recognition has attracted a large body of
work recently due to its wide applications. Early ap-
proaches are based on hand-crafted features and typically
use probabilistic graphical models [1–3, 22, 23, 43] and
AND-OR grammar methods [4, 31]. Recently, methods in-
corporating convolutional neural networks [7, 21] and re-
current neural networks [7, 13, 20, 21, 25, 29, 32, 39, 45]
have achieve remarkable performance, due to the learning
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Figure 2. Accuracy comparison with data in different percent-
age on Volleyball dataset. Our method achieves SOTA perfor-
mance, and achieves 94.2% with 50% data, which is competitive
to a number of recent approaches [17, 28, 44] trained with 100%
data. Solid point means result with additional optical flow input.

of temporal context and high-level information.
More recent group activity recognition methods [15, 17,

19,24,28,44,47,49] often require the explicit representation
of spatiotemporal relations, dedicated to apply attention-
based methods to model the individual relations for infer-
ring group activity. [44, 49] build relational graphs of the
actors and explore the spatial and temporal actor interac-
tions in the same time with graph convolution networks.
These methods simulate spatiotemporal interaction of ac-
tors in a joint manner. Differently, [47] builds separate
spatial and temporal relation graphs subsequently to model
the actor relations. [17] encodes temporal information with
I3D [10] and constructs spatial relation of the actors with
a vanilla transformer. [24] introduces a cluster attention
mechanism for better group informative features with trans-
formers. Different from previous approaches, we propose
to learn the actor interactions in complementary Spatial-
Temporal and Temporal-Spatial views and further promote
actor interaction learning with a designed self-supervised
loss for effective representation learning.
Vision Transformer has gradually become popular for
computer vision tasks. In image domain, ViT [14] firstly
introduces a pure transformer architecture without convo-
lution for image recognition. Following works [26, 41, 50]
make remarkable progress on enabling transformer archi-
tecture to become a general backbone on various kinds of
downstream computer vision tasks. In video domain, in-
spired by ViT, many works [5, 8, 16, 27] explore spatial
and temporal self-attention to learn efficient video repre-
sentation. TimeSformer [8] investigates the different space
and time attention mechanisms to learn spatial-temporal
representation efficiently. MViT [16] utilizes the multi-

2
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Figure 3. Our Dual-path Actor Interaction (Dual-AI) learning framework, where S-Trans and T-Trans denote Spatial-Transformer and
Temporal-transformer respectively. It effectively explores actor evolution in two complementary spatiotemporal views, i.e., ST path and
TS path, detailed in Sec. 3.2. Moreover, a Multi-scale Actor Contrastive loss is designed to enable interaction and cooperation of the two
paths as in Sec. 3.3.

scale features aggregation to enhance the spatial-temporal
representation. Motionformer [27] presents a trajectory-
focused self-attention block, which essentially tracks space-
time patches for video transformer. The above transformer
architectures are designed for general video classification
task. It has not been fully explored to tackle the challeng-
ing GAR problem with transformers. We propose to con-
struct dual spatiotemporal paths with transformers to flexi-
bly learn actor interactions for group activity recognition.

3. Method
To learn complex actor relations in the group activities,

we propose a distinct Dual-path Actor Interaction (Dual-AI)
framework for GAR. In this section, we introduce our Dual-
AI in detail. First, we describe an overview of Dual-AI
framework. Then, we explain how to build the interaction
paths, with assistance of spatial and temporal transformers.
Next, we introduce a Multi-scale Actor Contrastive Loss
(MAC-Loss) to further improve actor consistency between
paths. Finally, we describe the training objectives to opti-
mize our Dual-AI framework.

3.1. Framework Overview

As shown in Fig. 3, our Dual-AI framework consists
of three important steps. First, we need to extract ac-
tor features from backbone. Specifically, we sample K
frames from the input video. To make a fair comparison
with the previous works in GAR [7, 24, 44, 48, 49], we
choose ImageNet-pretrained Inception-v3 [33] as backbone
to extract feature of each sampled frame. Then, we apply
RoIAlign [18] on the frame feature, which can generate ac-

tor features in this frame from bounding boxes of N ac-
tors. After that, we adopt a fully-connected layer to fur-
ther encode each actor feature into a C dimensional vec-
tor. For convenience, we denote all the actor vectors as
X ∈ RK×N×C . More details can be found in Sec. 4.2.

After extracting actor feature vectors, we next learn spa-
tiotemporal interactions among these actors in the video.
Different from the previous approaches [17, 44, 46, 47, 49],
we disentangle spatiotemporal modeling into consecutive
spatial and temporal interactions in different orders. Specif-
ically, we design spatial and temporal transformers as ba-
sic actor relation modules. By flexibly arranging these
transformers in two reverse orders, we can enhance actor
relations with complementary integration of both spatial-
temporal (ST) and temporal-spatial (TS) interaction paths.
Finally, we design training losses to optimize our Dual-AI
framework. In particular, we introduce a novel Multi-scale
Actor Contrastive Loss (MAC-Loss) between two paths,
which can effectively improve discriminative power of in-
dividual actor representations, by actor consistency in all
the frame-frame, frame-video, video-video levels. Subse-
quently, we integrate actor representations of two paths to
recognize individual actions and group activities.

3.2. Dual-path Actor Interaction
To capture complex relations for diversified group activi-

ties, we propose a novel dual path structure to describe actor
interactions. To start with, we build basic spatial and tem-
poral actor relation units, with assistance of transformers.
Then, we explain how to construct dual paths for spatiotem-
poral actor interactions.

3
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3.2.1 Spatial/Temporal Actor Relation Units

To understand spatiotemporal actor evolution in videos, we
first construct basic units to describe spatial and temporal
actor relations. Since there is no prior knowledge about ac-
tor relation, we propose to use transformer to model such
relation by the powerful self-attention mechanism.

Spatial Actor Transformer. In order to model the spa-
tial relation of the actors in single frame, we design a con-
cise spatial actor transformer (S−Trans). Specifically, we
denote Xk ∈ RN×C as the feature vectors of N actors in
the k-th frame. The spatial relation among these actors are
modeled by X̂k = S−Trans(Xk), which consists of three
modules as follows,

X′ = SPE(Xk) +Xk, (1)
X′′ = LN(X′ +MHSA(X′)), (2)

X̂k = LN
(
X′′ + FFN(X′′)

)
. (3)

First, we use spatial position encoding (SPE) to add spatial
structure information of the actors in the scene, as in Eq. (1).
We represent spatial position of each actor with center point
of its bounding box and encode the spatial positions with PE
function in [9,17]. Second, we use multi-head self-attention
(MHSA) [37] module to reason the spatial interaction of
the actors in the scene, as in Eq. (2). Finally, we use feed-
forward network (FFN) [37] to further improve learning ca-
pacity of the spatial actor relation unit, as in Eq. (3).

Temporal Actor Transformer. In order to model the
temporal evolution of single actor across frames, we de-
sign a temporal actor transformer (T−Trans) following the
way in Eqs. (1) to (3). Differently, we use the input as
the feature vectors of the n-th actor across K frames, i.e.,
Xn ∈ RK×C . In this case, the MHSA module can reason
the evolution of actor n in different time steps. Moreover,
to add temporal sequence information of actor n, tempo-
ral position encoding (TPE) is used instead of SPE, which
encodes frame index {1, ...,K} with PE function in [37].
Finally, we can get actor features enhanced by temporal in-
teractions, as X̂n = T−Trans(Xn).

3.2.2 Dual Spatiotemporal Paths of Actor Interaction

Once the spatial and temporal relations of actors are built,
we can further integrate them to construct spatiotemporal
representation of the actor evolution. As discussed in Sec. 1,
the single order of space and time is insufficient to under-
stand the complex actor interactions, leading to the failure
of inferring group activities. Thus, we propose a dual spa-
tiotemporal paths framework for GAR to capture the com-
plex interaction of the actors.

It consists of two complementary spatiotemporal model-
ing patterns for actor evolution, i.e., Spatial-Temporal (ST)
and Temporal-Spatial (TS), by switching the order of space

and time as:

XST = T−Trans(X+MLP(S−Trans(X))) (4)
XTS = S−Trans(X+MLP(T−Trans(X))), (5)

where we adopt a residual structure to enhance the actor
representation. MLP with parameters in shape C × C is
used to add non-linearity. By reshaping the frame and ac-
tor dimension as batch dimension, S−Trans and T−Trans
reason about spatial and temporal actor interaction respec-
tively.

By stacking spatial and temporal transformers in differ-
ent orders, the actor representation is reweighted and ag-
gregated according to different spatiotemporal context. ST
path first reasons about the interaction of different actors in
the scene of each frame. Then, the temporal evolution is
modeled to reweight the built actor interaction across dif-
ferent frames. As such, ST path is skilled at recognizing
activities with distinct spatial arrangement, such as set in
volleyball games. This activity requires the player to move
to a new position and set the ball, usually accompanied by
other players moving or jumping for fake spiking. Comple-
mentarily, TS path reasons about the actor evolution, in the
opposite order of ST path. It considers temporal dynamics
of each actor in the first place, and then reasons about spa-
tial actor interaction to understand the scene. Hence, it is
skilled at recognizing activities with distinct actor evolution
patterns, such as spike in volleyball games, which requires
hitter to jump and quickly hit the ball.

Subsequently, to fully take advantage of such comple-
mentary characteristic, we feed the representation of actors
from ST and TS paths to generate individual actions and
group activity predictions, and fuse them as final predic-
tions of dual spatiotemporal paths.

3.3. Multi-scale Actor Contrastive Learning

The actor representation is reweighted and aggregated by
dual spatiotemporal paths, however, the modeling process
is independent. To promote cooperation of these two com-
plementary paths, we design a self-supervised Multi-scale
Actor Contrastive loss (MAC-loss). As dual spatiotempo-
ral paths model evolution of each actor in different patterns,
we define a pretext task of actor consistency. Specifically,
we design such constraints in multiple scales of frame and
video levels.

Frame-Frame Actor Contrastive Loss. The frame rep-
resentation of the actor in one path should be similar with its
corresponding frame representation in the other path, while
different from other frame representation of this actor in the
path. As shown in Fig. 4 (a), taking actor n in ST path as
an example, we attract frame representation in k-th frame
(Xn,k

ST ) to its corresponding representation from TS path
(Xn,k

TS ). Meanwhile, we repel the representation of actor

4



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVPR
#5612

CVPR
#5612

CVPR 2022 Submission #5612. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Frame 1

Frame 2

Frame K

Frame 1

Frame 2

Frame K

Frame 1

Frame 2

Frame K

Frame 1

Frame 2

Frame K

Temporal 
Pooling

ST
-P

at
h

TS
-P

at
h

(a) Frame-Frame Actor 
Contrastive Loss

(b) Frame-Video Actor 
Contrastive Loss

(c) Video-Video Actor 
Contrastive Loss

…
…

…

… ……

…
…

…

… … …

Attract

Repel

Acto
r 1

Acto
r 2

Acto
r N

…

…Temporal 
Pooling

Attract

Repel

Acto
r 1

Acto
r 2

Acto
r N

…
…

…

… ……

…
…

…

… … …

Frame 1

Frame 2

Frame K

Frame 1

Frame 2

Frame K

Temporal 
Pooling

…
…

…

… ……

…
…

…

… … …

Attract

Repel

Acto
r 1

Acto
r 2

Acto
r N

…

…Temporal 
Pooling

Figure 4. Illustration of MAC-loss for Actor N. It consists of three
levels, i.e., frame-frame, frame-video and video-video. The blue
block means the source of negative pairs. For simplicity, we only
show the constraints from ST path to TS path. It is similar for the
constraints from TS path to ST path.

n in other frames from TS path (Xn,t
TS, where t ̸=k),

Lff (X
n,k
ST ,Xn,k

TS ) = − log
h(Xn,k

ST ,Xn,k
TS )∑K

t=1 h(X
n,k
ST ,Xn,t

TS)
, (6)

where h(u,v) = exp( u⊤v
||u||2||v||2 ) is the exponential of co-

sine similarity measure. Vice versa, the loss for actor n in
TS path can be obtained by Lff (X

n,k
TS ,X

n,k
ST ).

Frame-Video Actor Contrastive Loss. The frame rep-
resentation of the actor in one path should be consistent with
its video representation in the other path, while different
from video representation of other actors in the path. As
shown in Fig. 4 (b), taking actor n in ST path as an example,
we attract its frame representation Xn,k

ST to its video repre-
sentation X̃n

TS from TS path, which is obtained by pool-
ing frame representation Xn,1:K

TS . Meanwhile, we repel the
video representation of other actors in the minibatch from
TS path (X̃i

TS, where i ̸=n),

Lfv(X
n,k
ST ,X̃n

TS) = − log
h(Xn,k

ST , X̃n
TS)∑B×N

i=1 h(Xn,k
ST , X̃i

TS)
, (7)

where B denotes the minibatch size. Vice versa, the loss for
actor n in TS path can be obtained by Lfv(X

n,k
TS , X̃

n
ST).

Video-Video Actor Contrastive Loss. Furthermore, we
constrain the consistency of video representation of each
actor across dual paths, as shown in Fig. 4 (c). We achieve
this by minimizing cosine similarity measure Lvv of corre-
sponding video representation (X̃n

TS, X̃
n
ST). Our proposed

MAC-loss is then formed as

LMAC = λffLff + λfvLfv + λvvLvv, (8)

where λ{·} denote weights for the different components.

3.4. Training objectives

Our network can be trained in an end-to-end manner to
simultaneously predict individual actions of each actor and
group activity. Combining with standard cross-entropy loss,
the final loss for recognition is formed as

Lcls=LCE(
ŷG
ts+ŷG

st + ŷG
scene

3
, yG)+λLCE(

ŷI
ts+ŷI

st

2
, yI), (9)

where ŷI{ts,st} and ŷG{ts,st} denote individual action and
group activity predictions from TS and ST paths. yI and
yG represent the ground truth labels for the target individ-
ual actions and group activity. ŷGscene denotes the scene pre-
diction produced by separate group activity classifier, using
features directly from backbone. λ is the hyper-parameter
to balance the two items. Finally, we combine all the losses
to train our Dual-AI framework,

L = Lcls + LMAC . (10)

During inference, we infer the individual actions and
group activity by averaging the predictions from the dual
spatiotemporal paths.

4. Experiments
4.1. Dataset

Volleyball Dataset. This dataset [21] consists of 4,830 la-
beled clips (3493/1337 for training/testing) from 55 volley-
ball games. Each clip is annotated with one of 8 group ac-
tivity classes. Middle frame of each clip is annotated with 9
individual action labels and their bounding boxes.
Collective Activity Dataset. This dataset [12] contains 44
short videos with every ten frames annotated with individ-
ual action labels and their bounding boxes. The group ac-
tivity class of each clip is determined by the largest number
of the individual action classes. We follow [45, 46, 49] to
merge the crossing and walking into moving.
Weak-Volleyball-M Dataset. This dataset [47] is adapted
from Volleyball dataset while merging pass and set cate-
gories to have total 6 group activity classes, and discarding
all individual annotations (including individual action labels
and bounding boxes) for weakly supervised GAR.
NBA Dataset. This dataset [47] contains 9,172 annotated
clips (7624/1548 for training and testing) from 181 NBA
game videos, each of which belongs to one of the 9 group
activities. No individual annotations, such as individual ac-
tion labels and bounding boxes, are provided.

4.2. Implementation Details

We select the Inception-v3 model as our CNN backbone,
following widely used settings [7,24,44,48,49] in GAR. We

5
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Method Backbone
Data
Ratio

Optical
Flow

Individual
Action

Group
Activity

HDTM [21] AlexNet 100% - 81.9
CERN [30] VGG16 100% - 83.3
StageNet [29] VGG16 100% - 89.3
HRN [20] VGG19 100% - 89.5
SSU [7] Inception-v3 100% 81.8 90.6
AFormer [17] I3D 100% - 91.4
ARG [44] Inception-v3 100% 83.0 92.5
TCE+STBiP [48] Inception-v3 100% - 93.3
DIN [49] ResNet-18 100% - 93.1
GFormer [24] Inception-v3 100% 83.7 94.1

Ours
Inception-v3 25% 82.1 89.7
Inception-v3 50% 83.0 92.7
Inception-v3 100% 84.4 94.4

SBGAR [25] Inception-v3 100% ✓ - 66.9
CRM [6] I3D 100% ✓ - 93.0
Aformer [17] I3D 100% ✓ 83.7 93.0
JLSG [15] I3D 100% ✓ 83.3 93.1
ERN [28] R50-FPN+I3D 100% ✓ 81.9 94.1
GFormer [24] I3D 100% ✓ 84.0 94.9

Ours
Inception-v3 25% ✓ 83.0 91.6
Inception-v3 50% ✓ 84.0 94.2
Inception-v3 100% ✓ 85.3 95.4

Table 1. Comparison with state-of-the-art methods on Volleyball
dataset in term of Acc.%.

Method Backbone MPCA
HDTM [21] AlexNet 89.7

PCTDM [45] AlexNet 92.2
CERN-2 [30] VGG-16 88.3
Recurrent [40] VGG-16 89.4
stagNet [29] VGG-16 89.1

SPA+KD [34] VGG-16 92.5
PRL [19] VGG-16 93.8
CRM [6] I3D 94.2
ARG [44] ResNet-18 92.3

HiGCIN [46] ResNet-18 93.0
DIN [49] ResNet-18 95.3

TCE+STBiP [48] Inception-v3 95.1

Ours
ResNet-18 96.0

Inception-v3 96.5

Table 2. Comparisons with previous state-of-the-art methods on
Collective Activity datatset.

also use ResNet-18 model as backbone for Collective Ac-
tivity Dataset, following widely used settings [46, 49]. We
apply the ROI-Align with crop size 5×5 and a linear embed-
ding to get actor features with dimension C = 1024. Each
Spatial or Temporal transformer has one attention layer with
256 embedding dimension. The λff , λfv, λvv in MAC-Loss
are all set 1.

For Vollyball and Weak-Volleyball-M, we randomly se-
lect K = 3 frames with 720×1280 resolution for training
and 9 frames for testing, corresponding to 4 frames be-
fore the middle frame and 4 frames after. For Collective
Activity dataset, we utilize K = 10 frames (480×720) of
each video clip for training and testing. For NBA dataset,
we select K = 3 frames (720×1280) around middle frame
of each video for training and take 20 frames for testing.
For Volleyball and Collective Activity dataset, we use an-

Method Backbone
Mod-
ality

NBA
Acc./Mean Acc.

Weak Vlb.
-M Acc.

TSN* [38] Incep-v1 RGB – / 37.8 –
I3D* [10] I3D RGB – / 32.7 –
Nlocal* [42] I3D-NLN RGB – / 32.3 –
ARG* [44] Incep-v3 RGB – / – 90.7
SAM [47] Res-18 RGB – / – 93.1
SAM [47] Incep-v3 RGB 49.1 / 47.5 94.0

Ours
Incep-v3 RGB 51.5 / 44.8 95.8
Incep-v3 Flow 56.8 / 49.1 96.1
Incep-v3 Fusion 58.1 / 50.2 96.5

Table 3. Comparision with state-of-the-art methods on NBA and
Weak-Volleyball-M dataset following metrics adopted in [47]. *
means the results are from [47].

Method 5% 10% 25% 50% 100%
PCTDM [45] 53.6 67.4 81.5 88.5 90.3
AFormer [17] 54.8 67.7 84.2 88.0 90.0
HiGCIN [46] 35.5 55.5 71.2 79.7 91.4
ERN [28] 41.2 52.5 73.1 75.4 90.7
ARG [44] 69.4 80.2 87.9 90.1 92.3
DIN [49] 58.3 71.7 84.1 89.9 93.1
Ours 76.2 85.5 89.7 92.7 94.4

Table 4. Comparison with state-of-the-art methods trained with
Volleyball dataset of different data ratios in term of group activity
recognition Acc.%.

notated bounding boxes provided by the datasets for train-
ing and testing to make fair comparison, i.e., N = 12 and
N = 13 respectively. For NBA and Weak-Volleyball-M
datasets, we detect person bounding boxes with MMDetec-
tion Toolbox [11] following [47], and set maximum actor
number N = 16 and N = 20 respectively. More details
can be found in supplementary materials.

4.3. SOTA Comparison

Full Setting. This setting allows us to train our model
with all data fully annotated with group activities and in-
dividual annotations. We compare our method with the
state-of-the-art approaches on Volleyball and Collective Ac-
tivity dataset. As shown in Tab. 1, our approach (94.4%)
with only RGB frames and Inception backbone has already
outperformed other SOTA methods with computationally
high backbones (I3D, FPN) and additional optical flow in-
put. Furthermore, equipped with RGB and optical flow
late fusion, our method can improve the SOTA result by
a large margin to 95.4%. Remarkably, even with only
50% data, our method still surpasses the vast majority of
the SOTA methods with 100% data, e.g., Ours (50%) vs.
SARF (100%): 94.2 vs. 93.1. As shown in Tab. 2, our ap-
proach also achieves state-of-the-art performance on Col-
lective Activity dataset. These results demonstrate the ef-
fectiveness of our method.

Weakly Supervised Setting. Under this setting we use
all raw data and group activity annotations, without any
individual annotations. We follow the [47] to report re-
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Dual-Path
Weak

Volleyball-M
Limited

Volleyball
Full

Volleyball
S-S 88.9 88.4 91.2
T-T 91.6 87.9 90.9
S-T 93.0 89.3 92.2
T-S 92.6 89.5 92.1
ST-ST Cross 92.1 88.7 91.7
ST-TS Fusion 94.2 90.8 93.3

Table 5. Effectiveness of our Dual Path Actor Interaction.

Components of MAC-loss Data Ratio
F-F F-V V-V 50% 100 %

90.8 93.3
✓ 91.2 93.5

✓ 91.0 93.3
✓ 91.6 93.6

✓ ✓ ✓ 92.1 94.0

Table 6. Effectiveness of our MAC-loss. Different components are
ablated on Volleyball dataset in term of Acc.%.

sults on Weak-Volleyball-M dataset and NBA dataset. As
shown in Tab. 3, our method surpasses all the existing meth-
ods by a good margin, establishing new state-of-the-art re-
sults. Specifically, our approach improves the previous
SOTA [47] by 2.5% on Weak-Volleyball-M and by 9% on
NBA dataset in term of Acc.%. It indicates that our Dual-AI
framework can enhance the learning ability of the model to
obtain robust representation and achieve promising perfor-
mance in the case individual annotations missing.

Limited Data Setting. In this setting, we train our
method with random sampled data in different ratios to
show the generalization power of our method. To compare
the results under this setting, we implement a number of
previous SOTA methods that have the officially-published
codes available. As shown in Tab. 4, our method surpasses
previous SOTA methods in all data ratios. Moreover, with
the available training data decreasing, the performance of
our method remains promising and the gain against other
methods gets enlarged, which demonstrates the robustness
of our method.

4.4. Ablation Study

Dual Spatial Temporal Paths. To validate the effec-
tiveness of our Dual Spatiotemporal Paths, we investigate
six settings. Particularly, we experiment with 50% data for
limited Volleyball. In addition to T-S and S-T introduced
in Section Sec. 3.2, other two paths, i.e., S-S and T-T are
introduced to validate in a broader range. S-S/T-T means
that features go through two successive Spatial/Temporal-
Transformer, respectively. ST-ST Cross denotes the way
where features from Spatial-Transformer and Temporal-
Transformer are fused in the middle and then fed into a
second Spatial/Temporal-Transformer, to achieve a cross-
enhanced spatiotemporal actor interaction. As shown in
Tab. 5, our Dual Paths is better than ST-ST Cross and

Scene Fusion Data Ratio
50% 100%

w/o 92.1 94.0
Early 92.0 93.9

Middle 92.2 94.0
Late 92.7 94.4

Table 7. Effectiveness of scene information.

SPE TPE
Individual

Action
Group

Activity
83.4 93.3

✓ 83.8 93.8
✓ 84.0 93.7
✓ ✓ 84.4 94.4

Table 8. Impact of spatial and temporal transformer structure. Dif-
ferent combinations of PEs are ablated in term of Acc.%.

achieves the best result under different setting. The reason
is that, dual-path TS and ST are good at inferring differ-
ent group activities and the learned representation from ST
and TS can complement each other, leading to a better per-
formance. This demonstrates that our dual path ST-TS is a
preferable way to comprehensively leverage both paths to
generate robust spatiotemporal contexts for boosting group
activity recognition.

Multi-scale Actor Contrastive Loss. We explore the
performance of our network with different components of
MAC loss. As shown in Tab. 6, with different component
of consistent loss (frame-frame, frame-video, video-video),
our network consistently outperforms w/o consistent loss.
By utilizing all components of MAC-loss, our network can
achieve the best results. Note that, given less available train-
ing data, the loss can help network get a larger accuracy im-
provement. It demonstrates that the MAC-loss can enable
cooperation of the dual complementary modeling process,
thereby enhancing the learned representation from ST and
TS paths, especially with limited available data.

Scene Information. We investigate the effectiveness of
scene information, by exploring the way to fuse scene con-
text in a early, middle and late fusion manner. As shown in
Tab. 7, late scene context fusion is the best choice. Regard-
less of the available data ratio, the scene information can
improve the performance by around 0.6 in term of Acc.%.
This is because that scene information can provide global-
level context, which can supplement the actor-level relation
modeling and is crucial to GAR.

Spatial and Temporal Position Encoding. In the last
ablation stage, we measure the importance of Spatial and
Temporal Position Encoding. As shown in Tab. 8, ei-
ther equipped with SPE or TPE, the performance of our
method can be improved. These results demonstrate that
SPE and TPE can provide useful spatial and temporal struc-
ture prior, which is beneficial to spatiotemporal action in-
teraction learning.
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(a) TS path (b) ST path (d) Dual paths + MAC-loss(c) Dual paths
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l-winpoint

Figure 5. t-SNE [36] visualization of video representation on the Volleyball dataset learned by different variants of our Dual-AI model: ST
path only, TS path only, Dual spatiotemporal paths, and final Dual-AI model.
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Figure 6. Actor interaction visualization for l-spike activity with connected lines. Brighter color indicates stronger relation. (a) For actor
8 in frame 0, we visualize the temporal interaction with same actors in different frames for ST and TS paths; similarly, we visualize the
spatial interaction with different actors in frame 0. (b) We visualize the actor interaction for actor 2 in frame 8 in the same way.

4.5. Visualization
Group Feature Visualization. Fig. 5 shows the t-

SNE [36] visualization of the learned representation. We
project video representation extracted from Volleyball val-
idation dataset to 2-D dimension using t-SNE. We can see
that learned representation from Dual Path transformer (c)
can be grouped better than single Temporal-Spatial path (a)
and Spatial-Temporal path (b). Furthermore, equipped with
MAC-loss, our Dual-AI network (d) is able to differentiate
group representations much better. These results demon-
strate the effectiveness of our Dual-AI framework.

Spatial/Temporal Actor Attention Visualization. We
visualize the actor interaction of l-spike activity in Fig. 6.
The attention weight between actors is represented by con-
nected lines, and the brightness of the lines represents the
scale of the attention weight. Orange and Blue lines corre-
spond to the Spatial and Temporal interaction, respectively.
As shown by spatial interaction in Fig. 6 (a), the spiking
player (actor 8) is more related with accompanying play-
ers in TS path, who are “moving” (actor 6 and 10) and
“standing” (actor 9). Differently, in ST path, actor 8 has
wider connections with accompanying players (e.g., actor 7

and actor 10) and defending players (e.g., actor 0 and ac-
tor 4). Similarly, as shown by spatial interaction in Fig. 6
(b), the actor 2 is related to different accompanying and de-
fending players in TS path and ST path respectively, show-
ing complementary patterns. As for temporal interaction in
both (a) and (b), the anchor actor is more related with early
frames (frame 0 and frame 3) in TS path, while more related
with late frames (frame 7 and frame 8) in ST path, showing
highly complementary patterns.

5. Conclusion
In this work, we develop a Dual-AI framework to

flexibly learn actor interactions in Spatial-Temporal and
Temporal-Spatial views. Furthermore, we design a distinct
MAC-loss to enable cooperation of dual paths for effective
actor interaction learning. We conduct experiments on three
datasets and establish new state-of-the-art results under dif-
ferent data settings. Particularly, our method with 50% data
surpasses a number of recent methods trained with 100%
data. The comprehensive ablation experiments and visual-
ization results show that our method is able to learn actor
interaction in a complementary way.
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