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Abstract

Differentiable Architecture Search (DARTS) has received
massive attention in recent years, mainly because it sig-
nificantly reduces the computational cost through weight
sharing and continuous relaxation. However, more recent
works find that existing differentiable NAS techniques strug-
gle to outperform naive baselines, yielding deteriorative
architectures as the search proceeds. Rather than directly
optimizing the architecture parameters, this paper formu-
lates the neural architecture search as a distribution learn-
ing problem through relaxing the architecture weights into
Gaussian distributions. By leveraging the natural-gradient
variational inference (NGVI), the architecture distribution
can be easily optimized based on existing codebases with-
out incurring more memory and computational consump-
tion. We demonstrate how the differentiable NAS benefits
from Bayesian principles, enhancing exploration and im-
proving stability. The experimental results on NAS-Bench-
201 and NAS-Bench-1shot1 benchmark datasets confirm
the significant improvements the proposed framework can
make. In addition, instead of simply applying the argmax
on the learned parameters, we further leverage the recently-
proposed training-free proxies in NAS to select the optimal
architecture from a group architectures drawn from the opti-
mized distribution, where we achieve state-of-the-art results
on the NAS-Bench-201 and NAS-Bench-1shot1 benchmarks.
Our best architecture in the DARTS search space also ob-
tains competitive test errors with 2.37%, 15.72%, and 24.2%
on CIFAR-10, CIFAR-100, and ImageNet datasets, respec-
tively.

1. Introduction
Neural Architecture Search (NAS) [12, 25–27, 38] is at-

taining increasing attention in the deep learning commu-
nity by automating the labor-intensive and time-consuming
neural network design process. More recently, NAS has
achieved the state-of-the-art results on various deep learn-
ing applications, including image classification [41], object
detection [11], stereo matching [13]. Although NAS has

the potential to find high-performing architectures without
human intervention, the early NAS methods have extremely-
high computational requirements [19, 37, 54]. For example,
in [37, 54], NAS costs thousands of GPU days to obtain a
promising architecture through reinforcement learning (RL)
or evolutionary algorithm (EA). This high computational
requirement in NAS is unaffordable for most researchers and
practitioners. Since then, more researchers shift to improve
the efficiency of NAS methods [20, 28, 36]. Weight sharing
NAS, also called One-Shot NAS [2, 36], defines the search
space as a supernet, and only the supernet is trained for once
during the architecture search. The architecture evaluation
is based on inheriting weights from the supernet without re-
training, thus significantly reducing the computational cost.
Differentiable architecture search (DARTS) [31], which is
one of the most representative works, further relaxes the
discrete search space into continuous space and jointly op-
timize supernet weights and architecture parameters with
gradient descent, to further improve efficiency. Through
employing two techniques, weight sharing [2, 36] and con-
tinuous relaxation [6, 16, 31, 45], DARTS reformulates the
discrete operation selection problem in NAS as a continuous
magnitude optimization problem, which reduces the com-
putational cost significantly and completes the architecture
search process within several hours on a single GPU.

Despite notable benefits on computational efficiency from
differentiable NAS, more recent works find it is still unreli-
able [8, 49] to directly optimize the architecture magnitudes.
For example, DARTS is unable to stably obtain excellent
solutions and yields deteriorative architectures during the
search proceeds, performing even worse than random search
in some cases [48]. This critical weakness is termed as
instability in differentiable NAS [49]. Zela et al. [49] em-
pirically point out that the instability of DARTS is highly
correlated with the dominant eigenvalue of the Hessian of
the validation loss with respect to the architectural param-
eters, while this dominant eigenvalue increases during the
architecture search. Accordingly, they proposed a simple
early-stopping criterion based on this dominant eigenvalue
to robustify DARTS. In addition, Wang et al. [44] observe
that the instability in DARTS’s final discretization process of
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architecture selection, where the optimized magnitude could
hardly indicate the importance of operations. On the other
hand, several works [9, 29, 39, 51] state that directly optimiz-
ing the architecture parameters without exploration easily
entails the rich-gets-richer problem, leading to those archi-
tectures that converge faster at the beginning while achieve
poor performance at the end of training, e.g. architectures
with intensive skip-connections [14, 30].

Unlike most existing works that directly optimize the
architecture parameters, we investigate differentiable NAS
from a distribution learning perspective, and introduce the
Bayesian Learning rule [22, 23, 33, 35] to the architecture
optimization in differentiable NAS with considering natural-
gradient variational inference (NGVI) methods to optimize
the architecture distribution, which we call BaLeNAS. We
theoretically demonstrate how the framework naturally en-
hance the exploration for differentiable NAS and improves
the stability, and the experimental results confirm that our
framework enhances the performance for differentiable NAS.
Rather than simply applying argmax on the mean to get a dis-
crete architecture, we for the first time leverage the training
free proxies [1, 7, 32] to select a more competitive architec-
ture from the optimized distribution, without incurring any
additional training costs. Specifically, our approach achieves
state-of-the-art performance on NAS-Bench-201 [17] and
improves the performance on NAS-Bench-1shot1 [50] by
large margins, and obtains competitive results on CIFAR-
10, CIFAR-100, and ImageNet datasets in the DARTS [31]
search space, with test error 2.37%, 15.72%, and 24.2%,
respectively. Our contributions are summarized as follows.

• Firstly, this paper formulates the neural architecture
search as a distribution learning problem and builds a
generalized Bayesian framework for architecture opti-
mization in differentiable NAS. We demonstrate that
the proposed Bayesian framework is a practical solu-
tion to enhance exploration for differentiable NAS and
improve stability as a by-product via implicitly regular-
izing the Hessian norm.

• Secondly, instead of directly applying the argmax on
the learned parameters to get architectures, we for the
first time leverage zero-cost proxies to select competi-
tive architectures from the optimized distributions. As
these proxies are calculated without any training, the
architecture selection phase can be finished extremely
efficiently.

• Thirdly, the proposed framework is built based on
DARTS and is also comfortable to be extended to other
differentiable NAS methods with minimal modifica-
tions through leveraging the natural-gradient variational
inference (NGVI). Experiments show that our frame-
work consistently improves the baselines with obtaining
more competitive architectures in various search spaces.

2. Preliminaries
2.1. Differentiable Architecture Search

Differentiable architecture search (DARTS) is built on
weight-sharing NAS [2, 36], where the supernet is trained
for once per the architecture search cycle. Rather than using
the heuristic methods [36, 51] to search for the promising ar-
chitecture in the discrete architecture space A, DARTS [31]
proposes the differentiable NAS framework by applying a
continuous relaxation (usually a softmax) to the discrete
architecture space and enabling gradient descent for architec-
ture optimization. Therefore, architecture parameters αθ and
supernet weights w could be jointly optimized during the
supernet training, and the promising architecture parameters
α∗θ are searched from the continuous search space Aθ once
the supernet is trained. The bilevel optimization formulation
is usually adopted to alternatively learn αθ and w:

min
αθ∈Aθ

Lval
(
argmin

w
Ltrain(w(αθ), αθ)

)
, (1)

and the best discrete architecture α∗ is obtained after apply-
ing argmax on α∗θ .

Despite notable benefits on computational efficiency from
DARTS, more recent works find it is still unreliable [8, 49]
that directly optimizes the architecture magnitudes, where
DARTS usually observes a performance collapses with
search progresses. This phenomenon is also called the in-
stability of differentiable NAS [8]. Zela et al. [49] observed
that the there is a strong correlation between the dominant
eigenvalue of the Hessian of the validation loss and the archi-
tecture’s generalization error in DARTS, and keeping the the
Hessian matrix’s norm in a low level plays a key role in robus-
tifying the performance of differentiable NAS [8]. In addi-
tion, as described above, the differentiable NAS first relaxes
the discrete architectures into continuous representations
to enable the gradient descent optimization, and projects
the continuous architecture representation αθ into discrete
architecture α after the differentiable architecture optimiza-
tion. However, more recent works [44] cast doubts on the
robustness of this discretization process in DARTS that the
magnitude of architecture parameter α∗θ could hardly indi-
cate the importance of operations with argmax. Taking the
DARTS as example, the searched architecture parameters
αθ are continuous, while α is represented with {0, 1} after
argmax. DARTS assumes that the Lval(w∗, α∗θ) is a good
indicator to the validation performance of α, Lval(w∗, α∗).
However, when we conduct the Taylor expansion on the
local optimal α∗θ [8, 9], we have:

Lval(w∗, α∗) = Lval(w∗, α∗θ) + OαθLval(w∗, α∗θ)T (α∗ − α∗θ)

+
1

2
(α∗ − α∗θ)TH(α∗ − α∗θ)

= Lval(w∗, α∗θ) +
1

2
(α∗ − α∗θ)TH(α∗ − α∗θ)

(2)
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where OαθLval = 0 due to the local optimality condition,
and H is the Hessian matrix of Lval(w∗, αθ). We can see
that the incongruence of the final continuous architecture
representation and the final discrete architecture relates to
the Hessian matrix’s norm. However, as demonstrated by
the empirical results in [49], the eigenvalue of this Hessian
matrix increases during the architecture search, incurring
more incongruence.

2.2. Bayesian Deep Learning

Given a datasetD = {D1,D1, ...,DN} and a deep neural
network with parameters θ, the most popular method to learn
θ with D is Empricial Risk Minimization (ERM):

min ¯̀(θ) :=

N∑
i=1

`i(θ) + ηR(θ), (3)

where `i is a loss function, e.g., `i = −log p(Di | θ) for
classification andR is the regularization term.

In contrast, the Bayesian deep learning estimate the pos-
terior distribution of θ, p(θ | D) := p(D | θ)p(θ)/p(D),
where p(θ) is the prior distribution. However, the normal-
ization constant p(D) =

∫
p(D | θ)p(θ)dθ is difficult to

compute for large DNNs. The variational inference (VI) [18]
resolves this issue in Bayesian deep learning by approximat-
ing p(θ | D) with a new distribution q(θ), and minimizes
the Kullback-Leibler (KL) divergence between p(θ | D) and
q(θ),

argminθKL(q(θ) ‖ p(θ | D)). (4)

When considering both p(θ) and q(θ) as Gaussian distribu-
tions with diagonal covariances:

p(θ) := N (θ | 0, I/δ), q(θ) := N (θ | µ, diag(σ2)), (5)

where δ is a known precision parameter with δ > 0, the mean
µ and deviation σ2 of q can be estimated by minimizing the
negative of evidence lower bound (ELBO) [3]:

L(µ, σ) : = −
N∑
i=1

Eq [log p(Di | θ)] + KL(q(θ) ‖ p(θ))

= −Eq
N∑
i=1

log p(Di | θ) + Eq
[

log
q(θ)

p(θ)

] (6)

A straightforward approach is using the stochastic gra-
dient descent to learn µ and σ2 along with minimizing L,
called as the Bayes by Backprob (BBB) [4]:

µt+1 = µt − ςt∇̂µLt, σt+1 = σt − ϕt∇̂σLt, (7)

where ςt and ϕt are the learning rates, and ∇̂µLt and ∇̂σLt
are the unbiased stochastic gradient estimates of L at µt
and σt. However, VI remains to be impractical for learning
large deep networks. The obvious issue is that VI introduces

more parameters to learn, as it needs to replace all neural
networks weights with random variables and simultaneously
optimize two vectors µ and σ to estimate the distribution
of θ, so the memory requirement is also doubled, leading a
lot of modifications when fitting existing differentiable NAS
codebases with the variational inference.

2.3. Training Free Proxies for NAS

Training Free NAS tries to identify promising architec-
tures at initialization without incurring training. Mellor et
al. [32] empirically find that the correlation between sample-
wise input-output Jacobian can indicate the architecture’s
test performance, and propose using the Jacobian to score a
set of randomly sampled models with randomly initialized
weights, which greedily chooses the model with the high-
est score. TE-NAS [7] utilizes the spectrum of NTKs and
the number of linear regions to analyzing the trainability
and expressivity of architectures. Rather than evaluating
the whole architecture, TE-NAS uses the perturbation-based
architecture selection as [44], to measure the importance of
each operation for the supernet prune.

Zero-cost NAS [1] extends the saliency metrics in the
network pruning at initialization to score an architecture,
through summing scores of all parameters θ in the architec-
ture. There are three popular saliency metrics, SNIP [24],
GraSP [43], and Synflow [42]:

Ssnip(θ) =

∣∣∣∣∂L∂θ � θ
∣∣∣∣ , Sgrasp(−θ) = −(H

∂L
∂θ

)� θ, SSF(θ) =
∂RSF

∂θ
� θ, (8)

where L is the common loss based on initialized weights,
H is the Hessian matrix, and RSF is defined as RSF =

1T
(∏L

l=1

∣∣θ[l]∣∣)1 that makes SynFlow data-agnostic.
Since these scores can be obtained without any training,
zero-cost NAS utilizes these zero-cost proxies to assist NAS
by warmup different search algorithms, e.g., initializing pop-
ulation or controller for aging evolution NAS and RL based
NAS, respectively. Different from zero-cost NAS that lever-
ages proxies before the search, we utilize these zero-cost
proxies for the architecture selection after search, to select
more competitive architectures from the optimized distribu-
tions.

3. The Proposed Method: BaLeNAS
3.1. Formulating NAS as Distribution Learning

Differentiable NAS normally considers the architecture
parameters αθ as learnable parameters and directly conducts
optimization in this space. Most previous differentiable NAS
methods first optimize the architecture parameters based on
the gradient of the performance, then update the supernet
weights based on the updated architecture parameters. Since
architectures with updated supernet weights are supposed
to have higher performance, architectures with better per-
formance in the early stage have a higher probability of

3
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being selected for the supernet training. The supernet train-
ing again improves these architectures’ performance. This
is to say, directly optimizing αθ without exploration eas-
ily entails the rich-get-richer problem [29, 51], leading to
suboptimal paths in the search space that converges faster
at the beginning but plateaued quickly [9, 39]. In contrast,
formulating the differentiable NAS as a distribution learning
problem by relaxing architecture parameters can naturally in-
troduce stochasticity and encourage exploration to resolve
this problem [8, 9].

In this paper, we formulate the architecture search as a
distribution learning problem, that for the first time consider
the more general Gaussian distributions for the architecture
parameters to optimize the posterior distribution p(αθ | D)
rather than αθ. Considering both p(θ) and q(θ) as Gaussian
distributions as Eq.(5), the bilevel optimization problem in
Eq.(1) could be reformulated as the distribution learning
based NAS:

min
µ,σ

Eq(αθ|µ,σ)Lval(w
∗(αθ), αθ),

s.t. w∗(αθ) = argmin
w
Ltrain(w(αθ), αθ),

(9)

where µ and σ are the two learnable parameters for the dis-
tribution q(αθ | µ, σ) := N (αθ | µ, diag(σ2)). Considering
the variational inference and Bayesian deep learning, based
on Eq.(4)-(6), the loss function for the outer-loop architec-
ture distribution optimization problem could be defined as:

Eq [Lval] := −Eq
N∑
i=1

log p(Di | αθ) + Eq
[

log
q(αθ)

p(αθ)

]
.

(10)
Since the architecture parameters αθ are random variables
sampled from the Gaussian distribution q(αθ | µ, σ), the
distribution learning-based method naturally encourages ex-
ploration during the architecture search.

3.2. Natural-Gradient VI for NAS

As describe in Sec.2.2, the traditional variational infer-
ence has double memory requirement and needs to re-design
the object function, making it difficult to fit with the differ-
entiable NAS. Thus, this paper considers natural-gradient
variational inference (NGVI) methods [22, 35] to optimize
the architecture distribution p(αθ | D) in a natural parameter
space, which requires the same number of parameters as
the traditional learning method. By leveraging NGVI, the
architecture parameter distribution could be learned by only
updating a natural parameter λ during the search.

NGVI parameterizes the distribution q(αθ) with a natural
parameter λ, considering q(αθ | λ) in a class of minimal
exponential family with natural parameter λ [21]:

q(αθ | λ) := h(αθ)exp
[
λTφ(αθ)−A(λ)

]
, (11)

where h(αθ) is the base measure, φ(αθ) is a vector con-
taining sufficient statistics, and A(λ) is the log-partition
function.

When h(αθ) ≡ 1, the distribution q(αθ | λ) could be
learned by only updating λ during the training [22, 23], and
λ could be learned in the natural-parameter space by:

λt+1 = (1− ρt)λt − ρt∇µEqt
[
¯̀(αθ)

]
, (12)

where ρt is the learning rate, ¯̀ is in the form of Eq.(3), and
the derivative∇µEqt(αθ)

[
¯̀(αθ)

]
is taken at µ = µt which is

the expectation parameter with Markov Chain Monte Carlo
(MCMC) sampling. And qt is the q(αθ | λ) parameterized
by λt, µ = µ(λ) is the expectation parameter of q(αθ | λ).
This is also called as the Bayesian learning rule [23].

When we consider Gaussin mean-field VI that p(αθ) and
q(αθ) are in the form of Eq.(5), the Variational Online-
Newton (VON) method proposed by Khan et. al. [22] shows
that the NGVI update could be written with the following
update:

µt+1 = µt − βt(ĝ(θt) + δ̃µt)/(st+1 + δ̃), (13)

st+1 = (1− βt)st + βt diag[∇̂2 ¯̀(θt)], (14)

where βt is the learning rate, θt ∼ N (αθ | µt, σ2
t ) with

σ2
t = 1/[N(st + δ̃)] and δ̃ = δ/N . ĝ is the stochastic

estimate with respect to q through MCMC sampling that,
ĝ(θt) = 1

M

∑
i∈M∇αθ ¯̀

i(αθ), and the minibatchM con-
tains M samples. More details are in [22]. Variational
RMSprop (Vprop) [22] further uses gradient magnitude
(GM) [5] approximation to reformulate Eq.(14) as:

st+1 = (1− βt)st + βt[ĝ(θt) ◦ ĝ(θt)], (15)

with ∇̂2
j,j

¯̀(θt) ≈
[

1
M

∑
i∈Mt

gi(α
j
θ)
]2

= [ĝ(θjt )]
2 [5]. The

most important benefit of VON and Vprop is that they only
need to calculate one parameter’s gradient to update posterior
distribution. In this way, this learning paradigm requires the
same number of parameters as traditional learning methods
and easy to fit with existing codebases.

We implement the proposed BaLeNAS based on the
DARTS [31] framework, the most popular differentiable
NAS baseline. Similar to DARTS, BaLeNAS also considers
an Adam-like optimizer for the architecture optimization,
updating the natural parameter λ of p(θ | D) as:

λt+1 = λt − ρt∇λLt + γt(λt − λt−1), (16)

where the last term is the momentum. Based on the Vprop
in Eq.(13) and (15), the update of µ and σ for the Adam-
like optimizer with NGVI, also called as Variational Adam
(VAdam), could be defined as following:

µt+1 =µt − βt(ĝ(θt) + δ̃µt) ◦
1

(st+1 + δ̃)

+ γt

⌊
st + δ̃

st+1 + δ̃

⌋
◦ (µt − µt−1),

(17)
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Algorithm 1 BaLeNAS
Initialize a supernet with supernet weightsw and architecture
parameters αθ

while not converged do
2: Update µ and σ2 for q(αθ | µ, σ2) based on Eq.(17)

and Eq.(18), with VAdam optimizer.
Update supernet weights w based on cross-entropy
loss with the common SGD optimizer.

4: end while
Obtain discrete architecture α∗ through argmax on µ; or
sample a set of αθ from q(α∗θ | µ, σ2), and utilize the
training free proxies for selection.

st+1 = (1− βt)st + βt[ĝ(θt) ◦ ĝ(θt)]. (18)

where “◦” stands for element-wise product, θt ∼ N (αθ |
µt, σ

2
t ) with σ2

t = 1/[N(st + δ̃)]. As pointed out in Sec. 2.2
and shown in Eq.(17) and Eq.(18), the distribution q(αθ) =
N (αθ | µ, σ2) is now optimized, needing to calculate the
gradient of only one parameter.

Implicit Regularization from MCMC Sampling: Several
recent works [8,9,49] empirically and theoretically show that
the performance of differentiable NAS is highly related to the
norm of H, the Hessian matrix of Lval(w∗, αθ), and keep-
ing this norm in a low level plays a key role in robustifying
differentiable NAS. As described before, we know the loss
Eqt(αθ)

[
¯̀(αθ)

]
of architecture optimization in BaLeNAS is

calculated based on MCMC sampling, showing the natural-
ity of enhancing exploration. Besides, Eqt(αθ)

[
¯̀(αθ)

]
also

has the naturality to enhance the stability in differentiable
NAS as SDARTS [8]. When conducting the Taylor expan-
sion, the loss function for the architecture parameters update
Eqt(αθ)

[
¯̀(αθ)

]
could be described as:

Eqt(αθ)
[
¯̀(αθ)

]
=Eq(αθ|µ,σ)Lval(w,αθ) = Eε∼N (0,σ2)Lval(w, µ+ ε)

=Eε∼N (0,σ2)[Lval(w, µ) + OµLval(w, µ)T ε+
1

2
εTHε]

=Eε∼N (0,σ2)

[
Lval(w, µ) +

1

2
εTHε

]
=Lval(w, µ) +

σ2

2
Tr {H} ,

(19)

where the line 4 in Eq.(19) is obtained since
Eε∼N (0,σ2)[OµLval(w,αθ)T ε] = Eε∼N (0,σ2)[ε] ∗
OµLval(w,αθ) = 0, as ε ∼ N (0, σ2) is a Gaussian
distribution with zero mean, and E(ε2) = σ2. µ is the
expectation parameter of q(αθ | µ, σ2), and H is the
Hessian matrix of Lval(w, µ). We can find the loss function
that could implicitly control the trace norm of H similar
as [8, 9], helping stabilizing differentiable NAS.

3.3. Architecture Selecting from the Distribution

After the optimization of BaLeNAS, we learns an opti-
mized Gaussian distribution for the architecture parameters
q(α∗θ | µ, σ2), which is used to get the optimal architec-
ture α∗. In this paper, we consider two methods to get
the discrete architecture α∗. The first one is a simple and
direct method, which utilizes the expectation of α∗θ to se-
lect the best operation for each edge through the argmax
as DARTS, where the expectation term is simply the mean
µ [9]. However, as we described in Sec. 2.1, this method
may result in instability and incongruence. The second one
is more general, which samples a set of α from the distribu-
tion q(α∗θ | µ, σ2) for architecture selection. However, in the
neural architecture search, evaluating a set of architectures
will incur unaffordable computational costs. In this paper,
instead of utilizing training-free proxies to assist NAS by
warmup before search as [1], we leverage these proxies, in-
cluding SNIP [24], GraSP [43], and Synflow [42], to score
the sampled architectures for selection after search.

Algorithm 1 gives a simple implementation of BaLeNAS,
where only the red part is different from DARTS. As shown,
in our BaLeNAS, only architecture parameter optimization
is different from DARTS which uses the VAdam optimizer,
making it easy to be implemented. Furthermore, as most ex-
isting differentiable NAS methods are built based on DARTS
codebase, our BaLeNAS is also comfortable to be adapted
to them with minimal modifications.

4. Experiments and Results

In this section, we consider three different search spaces
to analyze the proposed BaLeNAS framework. The first
two are NAS benchmark datasets, NAS-Bench-201 [17] and
NAS-Bench-1shot1 [50]. The ground-truth for all candi-
date architectures in the two benchmark datasets is known.
The NAS methods could be evaluated without retraining the
searched architectures based on these benchmark datasets,
thus greatly relieving the computational burden. The third
one is the commonly-used CNN search space in DARTS [31].
We first analyze our proposed BaLeNAS in the two bench-
mark datasets, then compare BaLeNAS with state-of-the-art
NAS methods in the DARTS search space.

4.1. Experiments on Benchmark Datasets

The NAS-Bench-201 [17] has a unified cell-based search
space, where the cell structure is densely-connected, con-
taining four nodes with five candidate operations applied on
each node, resulting in 15,625 architectures. NAS-Bench-
201 reports the CIFAR-10, CIFAR-100, and Imagenet per-
formance for all architecture in this search space. The NAS-
Bench-1shot1 [50] is built from the NAS-Bench-101 bench-
mark dataset [47], through dividing all architectures in NAS-
Bench-101 into 3 different unified cell-based search spaces,
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Table 1. Comparison results with state-of-the-art NAS approaches on NAS-Bench-201.

Method
CIFAR-10 CIFAR-100 ImageNet-16-120

Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%)

Random baseline 83.20±13.28 86.61±13.46 60.70±12.55 60.83±12.58 33.34±9.39 33.13±9.66
ENAS [36] 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10
RandomNAS [28] 85.63±0.44 88.58±0.21 60.99±2.79 61.45±2.24 31.63±2.15 31.37±2.51
SETN [15] 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
GDAS [16] 90.00±0.21 93.51±0.13 71.14±0.27 70.61±0.26 41.70±1.26 41.84±0.90
DrNAS [9] 91.55±0.00 94.36±0.00 73.49±0.00 73.51±0.00 46.37±0.00 46.34±0.00
DARTS (1st) [31] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS (2nd) [31] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
Zero-cost NAS [1] 90.19±0.66 93.45±0.28 70.55±1.61 70.73±1.36 43.24±2.52 43.64±2.42
BaLeNAS (1st) 91.03±0.15 93.62±0.12 70.88±0.60 70.98±0.41 45.19±0.75 45.25±0.86
BaLeNAS (2nd) 91.32±0.09 94.02±0.14 71.53±0.08 71.93±0.27 45.39±0.17 45.48±0.39
BaLeNAS-TF 91.52±0.04 94.33±0.03 72.67±0.41 72.95±0.28 46.14±0.23 46.54±0.36
optimal 91.61 94.37 74.49 73.51 46.77 47.31

The best single run of BaLeNAS-TF achieves 94.37%, 73.22%, and 46.71% test accuracy on three datasets, respectively. Our
BaLeNAS-TF considers the Synflow based proxy for architecture selection in this experiment.
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Figure 1. Validation and test error of BaLeNAS and DARTS on the
search space 3 of NAS-Bench-1shot1.

containing 6,240, 29,160, and 363,648 architectures, respec-
tively, and the CIFAR-10 performance for all architectures
are reported. The architectures in each search space have
the same number of nodes and connections, making the
differentiable NAS could be directly applied to each space.

4.1.1 Reproducible Comparison on NAS Benchmarks

Table 1 summarizes the performance of BaleNAS on NAS-
Bench-201 compared with differentiable NAS baselines,
where the statistical results are obtained from 4 indepen-
dent search experiments with four different random seeds.
In our BaLeNAS, we consider the expectation of αθ with
argmax to get the valid architecture, while BaLeNAS-TF
consider the training-free proxies for the architecture selec-
tion, with the sample size is set as 100. As shown in Table 1,
BaLeNAS achieves the best results on the NAS-Bench-201
benchmark and greatly outperforms other baselines on all
three datasets. As described in Sec. 3, BaLeNAS is built
based on the DARTS framework, with only modeling the
architecture parameters into distributions and introducing
Bayesian learning rule for optimization. As shown in Ta-
ble 1, BaLeNAS with first and second-order approximations

Table 2. Ablation study on the architecture selection.

Method (size) Test Accuracy
CIFAR-10 CIFAR-100 ImageNet

Zero-cost NAS(10) 92.12±1.25 68.1±2.49 40.07±1.86
Zero-cost NAS(50) 92.52±0.05 70.27±0.25 42.92±0.95
Zero-cost NAS(100) 93.45±0.16 69.87±0.35 44.43±0.75
BaLeNAS-TF(10) 94.08±0.13 72.55±0.42 45.82±0.30
BaLeNAS-TF(50) 94.33±0.03 72.95±0.28 46.54±0.36
BaLeNAS-TF(100) 94.33±0.03 72.95±0.28 46.54±0.36

both outperform DARTS by large margins, verifying the
effectiveness of our method. More interesting, combining
with the training-free proxies, BaLeNAS-TF can achieve bet-
ter results, showing that apart from warmup, these proxies
could also assist differentiable NAS at architecture selection.
The best single run of our BaLeNAS-TF achieves 94.37%,
73.22%, and 46.71% test accuracy on three datasets, respec-
tively, which are state-of-the-art on this benchmark dataset.

We also conduct a comparison study on the NAS-Bench-
1shot1 dataset to further verify the effectiveness of our BaLe-
NAS which reformulates architecture search as a distribution
learning problem. We have compared BaLeNAS with the
baseline DARTS on the three search spaces of NAS-Bench-
1shot1 with tracking the validation and test performance
of the search architectures in every iteration. As shown in
Fig. 1, our BaLeNAS, without training-free proxies based
architecture selection, generally outperforms DARTS during
the architecture search in terms of validation and test error
in the most complicated search space 3, both with first and
second-order approximation. More specifically, our BaLe-
NAS significantly outperforms the baseline in the early stage,
demonstrating our BaLeNAS could quickly find the supe-
rior architectures and is more stable. The results on both
NAS-Bench-201 and NAS-Bench-1shot1 verify that, by for-
mulating the architecture search as a distribution learning
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Table 3. Comparison results with state-of-the-art weight-sharing NAS approaches.

Method Test Error (%) Param FLOPs Search Architecture
CIFAR-10 CIFAR-100 ImageNet (M) (M) Cost Optimization

RandomNAS [28] 2.85±0.08 17.63 27.1 4.3 595 2.7 random
SNAS [45] 2.85±0.02 20.09 27.3 / 9.2 2.8 467 1.5 gradient
BayesNAS [53] 2.81±0.04 - 26.5 / 8.9 3.40 - 0.2 gradient
MdeNAS [52] 2.55 17.61 25.5 / 7.9 3.61 500 0.16 gradient
GDAS [16] 2.93 18.38 26.0 / 8.5 3.4 538 0.21 gradient
XNAS [34] 2.57±0.09 16.34 24.7 / 7.5 3.7 590 0.3 gradient
PDARTS [10] 2.50 16.63 24.4 / 7.4 3.4 543 0.3 gradient
PC-DARTS [46] 2.57±0.07 17.11 25.1 / 7.8 3.6 571 0.3 gradient
DrNAS [9] 2.54±0.03 16.30 24.2 / 7.3 4.0 644 0.4 gradient
DARTS+ [30] 2.50±0.11 16.28 - 3.7 - 0.4 gradient
DARTS (1st) [31] 2.94 - - 2.9 505 1.5 gradient
DARTS (2nd) [31] 2.76±0.09 17.54 26.9 / 8.7 3.4 530 4 gradient
BaLeNAS 2.50±0.07 16.84 25.0 / 7.7 3.82 593 0.6 gradient
BaLeNAS-TF 2.43±0.08 15.72 24.2 / 7.3 3.86 597 0.6 gradient

problem and introducing the Bayesian learning rule to op-
timize the posterior distribution, BaLeNAS can relieve the
instability and naturally enhance exploration to avoid local
optimum for differentiable NAS.

4.1.2 Ablation Study on the Architecture Selection

As described, our BaLeNAS-TF samples several architec-
tures from the optimized distribution and leverages the
training-free proxies for architecture selection, rather than
simply applying argmax on the mean. In this subsection,
we conduct ablation study to investigate the benefits of our
training-free based architecture selection. We considered 3
different training-free proxies as described in Sec. 2.3, in-
cluding SNIP, GraSP, and Synflow. We find that Synflow
is the most reliable proxies in the architecture selection,
as it achieves better performance than the remaining two
proxies for both zero-cost NAS and BaLeNAS, and also
consistently enhances the performance with the increase of
sample size. More detailed comparison can be found in the
Appendix. Zero-cost NAS [1] randomly generates samples
and calculates the scores based on the proxies for architec-
ture selection, while our BaLeNAS-TF generates samples
based on the optimized distribution (α∗θ | µ, σ2).

Table 2 compared zero-cost NAS and BaLeNAS-TF with
different sample sizes in the architecture selection. As shown,
the Synflow proxy can assist NAS as zero-cost NAS with dif-
ferent sample sizes achieve much better results than the Ran-
dom baseline in Table 1, and these proxies also enhance our
BaLeNAS, where our BaLeNAS-TF achieve higher accuracy.
These results again verified that the architecture selection
with train-free proxies can further improve the performance
for distribution learning based NAS. More interesting, Table
2 also showed that our BaLeNAS-TF outperformed zero-cost

NAS by a large margin, suggesting that our BaLeNAS can
converge to a competitive distribution.

4.2. Experiments on DARTS Search Space

To compare with the state-of-the-art differentiable NAS
methods, we applied BaLeNAS to the typical DARTS search
space [16,28,31] for convolutional architecture search, where
all experiment settings are following DARTS [31] for fair
comparisons as the same as the most recent works. Our
BaLeNAS-TF also considers the Synflow proxy in this ex-
periment. The architecture search in DARTS space generally
contains three stages: The differentiable NAS first searches
for micro-cell structures on CIFAR-10, and then stack more
cells to form the full structure for the architecture evaluation.
The best-found cell on CIFAR-10 is finally transferred to
larger datasets to evaluate its transferability.

4.2.1 Search Results on CIFAR-10

The comparison results with the state-of-the-art NAS meth-
ods are presented in Table 3. The best architecture searched
by our BaLeNAS-TF achieves a 2.37% test error on CIFAR-
10, which outperforms state-of-the-art NAS methods. We
can also see that both BaLeNAS-TF and BaLeNAS outper-
form DARTS by a large margin, demonstrating the effective-
ness of the proposed method. Besides, although BaLeNAS
introduced MCMC during architecture optimization, it is
still efficient in the sense that the whole architecture search
phase in BaLeNAS (2nd) only took 0.6 GPU days.

4.2.2 Transferability Results Analysis

Following DARTS experimental setting, the best-searched ar-
chitectures on CIFAR-10 are then transferred to CIFAR-100
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Figure 2. The ratio of skip-connection the searched normal cells
during the architecture search in the DARTS space.

and ImageNet to evaluate the transferability. The comparison
results with state-of-the-art differentiable NAS approaches
on CIFAR-100 and ImageNet are demonstrated in Table 3.
As shown in Table2, BaLeNAS-TF achieves a 15.72% test
error on the CIFAR-100 dataset, which is a state-of-the-art
performance and outperforms peer algorithms by a large
margin. On the ImageNet dataset, the best-discovered ar-
chitecture by our BaLeNAS-TF also achieved a competitive
result with 24.2 / 7.3 % top1 / top5 test error, outperforming
or on par with all peer algorithms.

4.2.3 Analysis on the Effect of Exploration

Several recent works [9, 39, 51] point out that directly opti-
mizing architecture parameters without exploration easily
entails the rich-gets-richer problem, leading to those archi-
tectures that converge faster at the beginning while achieve
poor performance at the end of training, e.g. architectures
with intensive skip-connections [14, 30]. However, when the
number of skip-connections is larger than 3, the architec-
ture’s retraining accuracy is usually extremely low [30, 49].
To relieve this issue, BaLeNAS formulates the differentiable
neural architecture search as a distribution learning problem,
and this experiment verifies how the proposed formulation
naturally enhance the exploration to relieve this issue. Fig. 2
plots the ratio of skip-connection in the searched normal cell
for BaLeNAS and DARTS (the total number of operations
in a cell is 8). As shown, DARTS is likely to select more
than 3 skip-connection in the normal cell during the search.
In contrast, in the proposed BaLeNAS, the number of skip-
connections is generally less than 2 in the normal cell during
the search for BaLeNAS.

4.2.4 Tracking of the Hessian norm

As described in Section 2.1, a large Hessian norm deteriorate
the robustness of DARTS, and the incongruence between
Lval(w∗, α∗θ) and Lval(w∗, α∗) is not negligible if we could

Normal cell for DARTS Reduction cell for DARTS 

Normal cell for BaLeNAS Reduction cell for BaLeNAS 

Figure 3. Trajectory of the Hessian norm in DARTS space.

not maintain the maintains the Hessian norm at a low level.
The analysis in Sec. 3.2 and Eq. (19) shows that the loss
function of the proposed BaLeNAS implicitly controls the
trace norm ofH similar as [8, 9], helping stabilizing differ-
entiable NAS. We plot the trajectory of the Hessian norm of
BaLeNAS compared with the vanilla DARTS in Fig. 3. As
show, the Hessian norm in our BaLeNAS is always kept in
a low level. Although the Hessian norm of BaLeNAS also
increases with the supernet training similar as DARTS, BaLe-
NAS’s largest Hessian norm is still smaller than DARTS in
the early stage, showing the effectiveness of implicit regular-
ization of our BaLeNAS as described in Sec. 3.2.

5. Conclusion
In this paper, we have formulated the architecture opti-

mization in the differentiable NAS as a distribution learning
problem and introduced a Bayesian learning rule to opti-
mize the architecture parameters posterior distributions. We
have theoretically demonstrated that the proposed frame-
work can enhance the exploration for differentiable NAS
and implicitly impose regularization on the Hessian norm
to improve the stability. The above properties show that
reformulating differentiable NAS as distribution learning
is a promising direction. In addition, with leveraging the
training-free proxies, our BaLeNAS can select more compet-
itive architectures from the optimized distributions instead
of applying argmax on the mean to get the the discrete ar-
chitecture, so that alleviate the discretization instability and
enhance the performance. We operationalize the framework
based on the common differentiable NAS baseline, DARTS,
and experimental results on NAS benchmark datasets and
the common DARTS search space have verified the proposed
framework’s effectiveness.

Although BaLeNAS improves the differentiable NAS
baseline by large margins, it computational consumption
and memory consumption are similar with DARTS where
our BaLeNAS is built on. Further questions include how
to further decrease the computational and memory cost and
also eliminate the depth gap existing between architecture
search and evaluation in differentiable NAS [10].
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