
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#5389

CVPR
#5389

CVPR 2022 Submission #5389. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

BaLeNAS: Differentiable Architecture Search via the Bayesian Learning Rule

Anonymous CVPR submission

Paper ID 5389

Abstract

Differentiable Architecture Search (DARTS) has received
massive attention in recent years, mainly because it sig-
nificantly reduces the computational cost through weight
sharing and continuous relaxation. However, more recent
works find that existing differentiable NAS techniques strug-
gle to outperform naive baselines, yielding deteriorative
architectures as the search proceeds. Rather than directly
optimizing the architecture parameters, this paper formu-
lates the neural architecture search as a distribution learn-
ing problem through relaxing the architecture weights into
Gaussian distributions. By leveraging the natural-gradient
variational inference (NGVI), the architecture distribution
can be easily optimized based on existing codebases with-
out incurring more memory and computational consump-
tion. We demonstrate how the differentiable NAS benefits
from Bayesian principles, enhancing exploration and im-
proving stability. The experimental results on NAS-Bench-
201 and NAS-Bench-1shot1 benchmark datasets confirm
the significant improvements the proposed framework can
make. In addition, instead of simply applying the argmax
on the learned parameters, we further leverage the recently-
proposed training-free proxies in NAS to select the optimal
architecture from a group architectures drawn from the opti-
mized distribution, where we achieve state-of-the-art results
on the NAS-Bench-201 and NAS-Bench-1shot1 benchmarks.
Our best architecture in the DARTS search space also ob-
tains competitive test errors with 2.37%, 15.72%, and 24.2%
on CIFAR-10, CIFAR-100, and ImageNet datasets, respec-
tively.

1. Introduction
Neural Architecture Search (NAS) [12, 25–27, 38] is at-

taining increasing attention in the deep learning commu-
nity by automating the labor-intensive and time-consuming
neural network design process. More recently, NAS has
achieved the state-of-the-art results on various deep learn-
ing applications, including image classification [41], object
detection [11], stereo matching [13]. Although NAS has

the potential to find high-performing architectures without
human intervention, the early NAS methods have extremely-
high computational requirements [19, 37, 54]. For example,
in [37, 54], NAS costs thousands of GPU days to obtain a
promising architecture through reinforcement learning (RL)
or evolutionary algorithm (EA). This high computational
requirement in NAS is unaffordable for most researchers and
practitioners. Since then, more researchers shift to improve
the efficiency of NAS methods [20, 28, 36]. Weight sharing
NAS, also called One-Shot NAS [2, 36], defines the search
space as a supernet, and only the supernet is trained for once
during the architecture search. The architecture evaluation
is based on inheriting weights from the supernet without re-
training, thus significantly reducing the computational cost.
Differentiable architecture search (DARTS) [31], which is
one of the most representative works, further relaxes the
discrete search space into continuous space and jointly op-
timize supernet weights and architecture parameters with
gradient descent, to further improve efficiency. Through
employing two techniques, weight sharing [2, 36] and con-
tinuous relaxation [6, 16, 31, 45], DARTS reformulates the
discrete operation selection problem in NAS as a continuous
magnitude optimization problem, which reduces the com-
putational cost significantly and completes the architecture
search process within several hours on a single GPU.

Despite notable benefits on computational efficiency from
differentiable NAS, more recent works find it is still unreli-
able [8, 49] to directly optimize the architecture magnitudes.
For example, DARTS is unable to stably obtain excellent
solutions and yields deteriorative architectures during the
search proceeds, performing even worse than random search
in some cases [48]. This critical weakness is termed as
instability in differentiable NAS [49]. Zela et al. [49] em-
pirically point out that the instability of DARTS is highly
correlated with the dominant eigenvalue of the Hessian of
the validation loss with respect to the architectural param-
eters, while this dominant eigenvalue increases during the
architecture search. Accordingly, they proposed a simple
early-stopping criterion based on this dominant eigenvalue
to robustify DARTS. In addition, Wang et al. [44] observe
that the instability in DARTS’s final discretization process of

1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#5389

CVPR
#5389

CVPR 2022 Submission #5389. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

architecture selection, where the optimized magnitude could
hardly indicate the importance of operations. On the other
hand, several works [9, 29, 39, 51] state that directly optimiz-
ing the architecture parameters without exploration easily
entails the rich-gets-richer problem, leading to those archi-
tectures that converge faster at the beginning while achieve
poor performance at the end of training, e.g. architectures
with intensive skip-connections [14, 30].

Unlike most existing works that directly optimize the
architecture parameters, we investigate differentiable NAS
from a distribution learning perspective, and introduce the
Bayesian Learning rule [22, 23, 33, 35] to the architecture
optimization in differentiable NAS with considering natural-
gradient variational inference (NGVI) methods to optimize
the architecture distribution, which we call BaLeNAS. We
theoretically demonstrate how the framework naturally en-
hance the exploration for differentiable NAS and improves
the stability, and the experimental results confirm that our
framework enhances the performance for differentiable NAS.
Rather than simply applying argmax on the mean to get a dis-
crete architecture, we for the first time leverage the training
free proxies [1, 7, 32] to select a more competitive architec-
ture from the optimized distribution, without incurring any
additional training costs. Specifically, our approach achieves
state-of-the-art performance on NAS-Bench-201 [17] and
improves the performance on NAS-Bench-1shot1 [50] by
large margins, and obtains competitive results on CIFAR-
10, CIFAR-100, and ImageNet datasets in the DARTS [31]
search space, with test error 2.37%, 15.72%, and 24.2%,
respectively. Our contributions are summarized as follows.

• Firstly, this paper formulates the neural architecture
search as a distribution learning problem and builds a
generalized Bayesian framework for architecture opti-
mization in differentiable NAS. We demonstrate that
the proposed Bayesian framework is a practical solu-
tion to enhance exploration for differentiable NAS and
improve stability as a by-product via implicitly regular-
izing the Hessian norm.

• Secondly, instead of directly applying the argmax on
the learned parameters to get architectures, we for the
first time leverage zero-cost proxies to select competi-
tive architectures from the optimized distributions. As
these proxies are calculated without any training, the
architecture selection phase can be finished extremely
efficiently.

• Thirdly, the proposed framework is built based on
DARTS and is also comfortable to be extended to other
differentiable NAS methods with minimal modifica-
tions through leveraging the natural-gradient variational
inference (NGVI). Experiments show that our frame-
work consistently improves the baselines with obtaining
more competitive architectures in various search spaces.

2. Preliminaries
2.1. Differentiable Architecture Search

Differentiable architecture search (DARTS) is built on
weight-sharing NAS [2, 36], where the supernet is trained
for once per the architecture search cycle. Rather than using
the heuristic methods [36, 51] to search for the promising ar-
chitecture in the discrete architecture space A, DARTS [31]
proposes the differentiable NAS framework by applying a
continuous relaxation (usually a softmax) to the discrete
architecture space and enabling gradient descent for architec-
ture optimization. Therefore, architecture parameters αθ and
supernet weights w could be jointly optimized during the
supernet training, and the promising architecture parameters
α∗θ are searched from the continuous search space Aθ once
the supernet is trained. The bilevel optimization formulation
is usually adopted to alternatively learn αθ and w:

min
αθ∈Aθ

Lval
(
argmin

w
Ltrain(w(αθ), αθ)

)
, (1)

and the best discrete architecture α∗ is obtained after apply-
ing argmax on α∗θ .

Despite notable benefits on computational efficiency from
DARTS, more recent works find it is still unreliable [8, 49]
that directly optimizes the architecture magnitudes, where
DARTS usually observes a performance collapses with
search progresses. This phenomenon is also called the in-
stability of differentiable NAS [8]. Zela et al. [49] observed
that the there is a strong correlation between the dominant
eigenvalue of the Hessian of the validation loss and the archi-
tecture’s generalization error in DARTS, and keeping the the
Hessian matrix’s norm in a low level plays a key role in robus-
tifying the performance of differentiable NAS [8]. In addi-
tion, as described above, the differentiable NAS first relaxes
the discrete architectures into continuous representations
to enable the gradient descent optimization, and projects
the continuous architecture representation αθ into discrete
architecture α after the differentiable architecture optimiza-
tion. However, more recent works [44] cast doubts on the
robustness of this discretization process in DARTS that the
magnitude of architecture parameter α∗θ could hardly indi-
cate the importance of operations with argmax. Taking the
DARTS as example, the searched architecture parameters
αθ are continuous, while α is represented with {0, 1} after
argmax. DARTS assumes that the Lval(w∗, α∗θ) is a good
indicator to the validation performance of α, Lval(w∗, α∗).
However, when we conduct the Taylor expansion on the
local optimal α∗θ [8, 9], we have:

Lval(w∗, α∗) = Lval(w∗, α∗θ) + OαθLval(w∗, α∗θ)T (α∗ − α∗θ)

+
1

2
(α∗ − α∗θ)TH(α∗ − α∗θ)

= Lval(w∗, α∗θ) +
1

2
(α∗ − α∗θ)TH(α∗ − α∗θ)

(2)

2

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#5389

CVPR
#5389

CVPR 2022 Submission #5389. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

where OαθLval = 0 due to the local optimality condition,
and H is the Hessian matrix of Lval(w∗, αθ). We can see
that the incongruence of the final continuous architecture
representation and the final discrete architecture relates to
the Hessian matrix’s norm. However, as demonstrated by
the empirical results in [49], the eigenvalue of this Hessian
matrix increases during the architecture search, incurring
more incongruence.

2.2. Bayesian Deep Learning

Given a datasetD = {D1,D1, ...,DN} and a deep neural
network with parameters θ, the most popular method to learn
θ with D is Empricial Risk Minimization (ERM):

min ¯̀(θ) :=

N∑
i=1

`i(θ) + ηR(θ), (3)

where `i is a loss function, e.g., `i = −log p(Di | θ) for
classification andR is the regularization term.

In contrast, the Bayesian deep learning estimate the pos-
terior distribution of θ, p(θ | D) := p(D | θ)p(θ)/p(D),
where p(θ) is the prior distribution. However, the normal-
ization constant p(D) =

∫
p(D | θ)p(θ)dθ is difficult to

compute for large DNNs. The variational inference (VI) [18]
resolves this issue in Bayesian deep learning by approximat-
ing p(θ | D) with a new distribution q(θ), and minimizes
the Kullback-Leibler (KL) divergence between p(θ | D) and
q(θ),

argminθKL(q(θ) ‖ p(θ | D)). (4)

When considering both p(θ) and q(θ) as Gaussian distribu-
tions with diagonal covariances:

p(θ) := N (θ | 0, I/δ), q(θ) := N (θ | µ, diag(σ2)), (5)

where δ is a known precision parameter with δ > 0, the mean
µ and deviation σ2 of q can be estimated by minimizing the
negative of evidence lower bound (ELBO) [3]:

L(µ, σ) : = −
N∑
i=1

Eq [log p(Di | θ)] + KL(q(θ) ‖ p(θ))

= −Eq
N∑
i=1

log p(Di | θ) + Eq
[

log
q(θ)

p(θ)

] (6)

A straightforward approach is using the stochastic gra-
dient descent to learn µ and σ2 along with minimizing L,
called as the Bayes by Backprob (BBB) [4]:

µt+1 = µt − ςt∇̂µLt, σt+1 = σt − ϕt∇̂σLt, (7)

where ςt and ϕt are the learning rates, and ∇̂µLt and ∇̂σLt
are the unbiased stochastic gradient estimates of L at µt
and σt. However, VI remains to be impractical for learning
large deep networks. The obvious issue is that VI introduces

more parameters to learn, as it needs to replace all neural
networks weights with random variables and simultaneously
optimize two vectors µ and σ to estimate the distribution
of θ, so the memory requirement is also doubled, leading a
lot of modifications when fitting existing differentiable NAS
codebases with the variational inference.

2.3. Training Free Proxies for NAS

Training Free NAS tries to identify promising architec-
tures at initialization without incurring training. Mellor et
al. [32] empirically find that the correlation between sample-
wise input-output Jacobian can indicate the architecture’s
test performance, and propose using the Jacobian to score a
set of randomly sampled models with randomly initialized
weights, which greedily chooses the model with the high-
est score. TE-NAS [7] utilizes the spectrum of NTKs and
the number of linear regions to analyzing the trainability
and expressivity of architectures. Rather than evaluating
the whole architecture, TE-NAS uses the perturbation-based
architecture selection as [44], to measure the importance of
each operation for the supernet prune.

Zero-cost NAS [1] extends the saliency metrics in the
network pruning at initialization to score an architecture,
through summing scores of all parameters θ in the architec-
ture. There are three popular saliency metrics, SNIP [24],
GraSP [43], and Synflow [42]:

Ssnip(θ) =

∣∣∣∣∂L∂θ � θ
∣∣∣∣ , Sgrasp(−θ) = −(H

∂L
∂θ

)� θ, SSF(θ) =
∂RSF

∂θ
� θ, (8)

where L is the common loss based on initialized weights,
H is the Hessian matrix, and RSF is defined as RSF =

1T
(∏L

l=1

∣∣θ[l]∣∣)1 that makes SynFlow data-agnostic.
Since these scores can be obtained without any training,
zero-cost NAS utilizes these zero-cost proxies to assist NAS
by warmup different search algorithms, e.g., initializing pop-
ulation or controller for aging evolution NAS and RL based
NAS, respectively. Different from zero-cost NAS that lever-
ages proxies before the search, we utilize these zero-cost
proxies for the architecture selection after search, to select
more competitive architectures from the optimized distribu-
tions.

3. The Proposed Method: BaLeNAS
3.1. Formulating NAS as Distribution Learning

Differentiable NAS normally considers the architecture
parameters αθ as learnable parameters and directly conducts
optimization in this space. Most previous differentiable NAS
methods first optimize the architecture parameters based on
the gradient of the performance, then update the supernet
weights based on the updated architecture parameters. Since
architectures with updated supernet weights are supposed
to have higher performance, architectures with better per-
formance in the early stage have a higher probability of

3

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVPR
#5389

CVPR
#5389

CVPR 2022 Submission #5389. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

being selected for the supernet training. The supernet train-
ing again improves these architectures’ performance. This
is to say, directly optimizing αθ without exploration eas-
ily entails the rich-get-richer problem [29, 51], leading to
suboptimal paths in the search space that converges faster
at the beginning but plateaued quickly [9, 39]. In contrast,
formulating the differentiable NAS as a distribution learning
problem by relaxing architecture parameters can naturally in-
troduce stochasticity and encourage exploration to resolve
this problem [8, 9].

In this paper, we formulate the architecture search as a
distribution learning problem, that for the first time consider
the more general Gaussian distributions for the architecture
parameters to optimize the posterior distribution p(αθ | D)
rather than αθ. Considering both p(θ) and q(θ) as Gaussian
distributions as Eq.(5), the bilevel optimization problem in
Eq.(1) could be reformulated as the distribution learning
based NAS:

min
µ,σ

Eq(αθ|µ,σ)Lval(w
∗(αθ), αθ),

s.t. w∗(αθ) = argmin
w
Ltrain(w(αθ), αθ),

(9)

where µ and σ are the two learnable parameters for the dis-
tribution q(αθ | µ, σ) := N (αθ | µ, diag(σ2)). Considering
the variational inference and Bayesian deep learning, based
on Eq.(4)-(6), the loss function for the outer-loop architec-
ture distribution optimization problem could be defined as:

Eq [Lval] := −Eq
N∑
i=1

log p(Di | αθ) + Eq
[

log
q(αθ)

p(αθ)

]
.

(10)
Since the architecture parameters αθ are random variables
sampled from the Gaussian distribution q(αθ | µ, σ), the
distribution learning-based method naturally encourages ex-
ploration during the architecture search.

3.2. Natural-Gradient VI for NAS

As describe in Sec.2.2, the traditional variational infer-
ence has double memory requirement and needs to re-design
the object function, making it difficult to fit with the differ-
entiable NAS. Thus, this paper considers natural-gradient
variational inference (NGVI) methods [22, 35] to optimize
the architecture distribution p(αθ | D) in a natural parameter
space, which requires the same number of parameters as
the traditional learning method. By leveraging NGVI, the
architecture parameter distribution could be learned by only
updating a natural parameter λ during the search.

NGVI parameterizes the distribution q(αθ) with a natural
parameter λ, considering q(αθ | λ) in a class of minimal
exponential family with natural parameter λ [21]:

q(αθ | λ) := h(αθ)exp
[
λTφ(αθ)−A(λ)

]
, (11)

where h(αθ) is the base measure, φ(αθ) is a vector con-
taining sufficient statistics, and A(λ) is the log-partition
function.

When h(αθ) ≡ 1, the distribution q(αθ | λ) could be
learned by only updating λ during the training [22, 23], and
λ could be learned in the natural-parameter space by:

λt+1 = (1− ρt)λt − ρt∇µEqt
[
¯̀(αθ)

]
, (12)

where ρt is the learning rate, ¯̀ is in the form of Eq.(3), and
the derivative∇µEqt(αθ)

[
¯̀(αθ)

]
is taken at µ = µt which is

the expectation parameter with Markov Chain Monte Carlo
(MCMC) sampling. And qt is the q(αθ | λ) parameterized
by λt, µ = µ(λ) is the expectation parameter of q(αθ | λ).
This is also called as the Bayesian learning rule [23].

When we consider Gaussin mean-field VI that p(αθ) and
q(αθ) are in the form of Eq.(5), the Variational Online-
Newton (VON) method proposed by Khan et. al. [22] shows
that the NGVI update could be written with the following
update:

µt+1 = µt − βt(ĝ(θt) + δ̃µt)/(st+1 + δ̃), (13)

st+1 = (1− βt)st + βt diag[∇̂2 ¯̀(θt)], (14)

where βt is the learning rate, θt ∼ N (αθ | µt, σ2
t) with

σ2
t = 1/[N(st + δ̃)] and δ̃ = δ/N . ĝ is the stochastic

estimate with respect to q through MCMC sampling that,
ĝ(θt) = 1

M

∑
i∈M∇αθ ¯̀

i(αθ), and the minibatchM con-
tains M samples. More details are in [22]. Variational
RMSprop (Vprop) [22] further uses gradient magnitude
(GM) [5] approximation to reformulate Eq.(14) as:

st+1 = (1− βt)st + βt[ĝ(θt) ◦ ĝ(θt)], (15)

with ∇̂2
j,j

¯̀(θt) ≈
[

1
M

∑
i∈Mt

gi(α
j
θ)
]2

= [ĝ(θjt)]
2 [5]. The

most important benefit of VON and Vprop is that they only
need to calculate one parameter’s gradient to update posterior
distribution. In this way, this learning paradigm requires the
same number of parameters as traditional learning methods
and easy to fit with existing codebases.

We implement the proposed BaLeNAS based on the
DARTS [31] framework, the most popular differentiable
NAS baseline. Similar to DARTS, BaLeNAS also considers
an Adam-like optimizer for the architecture optimization,
updating the natural parameter λ of p(θ | D) as:

λt+1 = λt − ρt∇λLt + γt(λt − λt−1), (16)

where the last term is the momentum. Based on the Vprop
in Eq.(13) and (15), the update of µ and σ for the Adam-
like optimizer with NGVI, also called as Variational Adam
(VAdam), could be defined as following:

µt+1 =µt − βt(ĝ(θt) + δ̃µt) ◦
1

(st+1 + δ̃)

+ γt

⌊
st + δ̃

st+1 + δ̃

⌋
◦ (µt − µt−1),

(17)

4

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVPR
#5389

CVPR
#5389

CVPR 2022 Submission #5389. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Algorithm 1 BaLeNAS
Initialize a supernet with supernet weightsw and architecture
parameters αθ

while not converged do
2: Update µ and σ2 for q(αθ | µ, σ2) based on Eq.(17)

and Eq.(18), with VAdam optimizer.
Update supernet weights w based on cross-entropy
loss with the common SGD optimizer.

4: end while
Obtain discrete architecture α∗ through argmax on µ; or
sample a set of αθ from q(α∗θ | µ, σ2), and utilize the
training free proxies for selection.

st+1 = (1− βt)st + βt[ĝ(θt) ◦ ĝ(θt)]. (18)

where “◦” stands for element-wise product, θt ∼ N (αθ |
µt, σ

2
t) with σ2

t = 1/[N(st + δ̃)]. As pointed out in Sec. 2.2
and shown in Eq.(17) and Eq.(18), the distribution q(αθ) =
N (αθ | µ, σ2) is now optimized, needing to calculate the
gradient of only one parameter.

Implicit Regularization from MCMC Sampling: Several
recent works [8,9,49] empirically and theoretically show that
the performance of differentiable NAS is highly related to the
norm of H, the Hessian matrix of Lval(w∗, αθ), and keep-
ing this norm in a low level plays a key role in robustifying
differentiable NAS. As described before, we know the loss
Eqt(αθ)

[
¯̀(αθ)

]
of architecture optimization in BaLeNAS is

calculated based on MCMC sampling, showing the natural-
ity of enhancing exploration. Besides, Eqt(αθ)

[
¯̀(αθ)

]
also

has the naturality to enhance the stability in differentiable
NAS as SDARTS [8]. When conducting the Taylor expan-
sion, the loss function for the architecture parameters update
Eqt(αθ)

[
¯̀(αθ)

]
could be described as:

Eqt(αθ)
[
¯̀(αθ)

]
=Eq(αθ|µ,σ)Lval(w,αθ) = Eε∼N (0,σ2)Lval(w, µ+ ε)

=Eε∼N (0,σ2)[Lval(w, µ) + OµLval(w, µ)T ε+
1

2
εTHε]

=Eε∼N (0,σ2)

[
Lval(w, µ) +

1

2
εTHε

]
=Lval(w, µ) +

σ2

2
Tr {H} ,

(19)

where the line 4 in Eq.(19) is obtained since
Eε∼N (0,σ2)[OµLval(w,αθ)T ε] = Eε∼N (0,σ2)[ε] ∗
OµLval(w,αθ) = 0, as ε ∼ N (0, σ2) is a Gaussian
distribution with zero mean, and E(ε2) = σ2. µ is the
expectation parameter of q(αθ | µ, σ2), and H is the
Hessian matrix of Lval(w, µ). We can find the loss function
that could implicitly control the trace norm of H similar
as [8, 9], helping stabilizing differentiable NAS.

3.3. Architecture Selecting from the Distribution

After the optimization of BaLeNAS, we learns an opti-
mized Gaussian distribution for the architecture parameters
q(α∗θ | µ, σ2), which is used to get the optimal architec-
ture α∗. In this paper, we consider two methods to get
the discrete architecture α∗. The first one is a simple and
direct method, which utilizes the expectation of α∗θ to se-
lect the best operation for each edge through the argmax
as DARTS, where the expectation term is simply the mean
µ [9]. However, as we described in Sec. 2.1, this method
may result in instability and incongruence. The second one
is more general, which samples a set of α from the distribu-
tion q(α∗θ | µ, σ2) for architecture selection. However, in the
neural architecture search, evaluating a set of architectures
will incur unaffordable computational costs. In this paper,
instead of utilizing training-free proxies to assist NAS by
warmup before search as [1], we leverage these proxies, in-
cluding SNIP [24], GraSP [43], and Synflow [42], to score
the sampled architectures for selection after search.

Algorithm 1 gives a simple implementation of BaLeNAS,
where only the red part is different from DARTS. As shown,
in our BaLeNAS, only architecture parameter optimization
is different from DARTS which uses the VAdam optimizer,
making it easy to be implemented. Furthermore, as most ex-
isting differentiable NAS methods are built based on DARTS
codebase, our BaLeNAS is also comfortable to be adapted
to them with minimal modifications.

4. Experiments and Results

In this section, we consider three different search spaces
to analyze the proposed BaLeNAS framework. The first
two are NAS benchmark datasets, NAS-Bench-201 [17] and
NAS-Bench-1shot1 [50]. The ground-truth for all candi-
date architectures in the two benchmark datasets is known.
The NAS methods could be evaluated without retraining the
searched architectures based on these benchmark datasets,
thus greatly relieving the computational burden. The third
one is the commonly-used CNN search space in DARTS [31].
We first analyze our proposed BaLeNAS in the two bench-
mark datasets, then compare BaLeNAS with state-of-the-art
NAS methods in the DARTS search space.

4.1. Experiments on Benchmark Datasets

The NAS-Bench-201 [17] has a unified cell-based search
space, where the cell structure is densely-connected, con-
taining four nodes with five candidate operations applied on
each node, resulting in 15,625 architectures. NAS-Bench-
201 reports the CIFAR-10, CIFAR-100, and Imagenet per-
formance for all architecture in this search space. The NAS-
Bench-1shot1 [50] is built from the NAS-Bench-101 bench-
mark dataset [47], through dividing all architectures in NAS-
Bench-101 into 3 different unified cell-based search spaces,

5

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

CVPR
#5389

CVPR
#5389

CVPR 2022 Submission #5389. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Comparison results with state-of-the-art NAS approaches on NAS-Bench-201.

Method
CIFAR-10 CIFAR-100 ImageNet-16-120

Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%)

Random baseline 83.20±13.28 86.61±13.46 60.70±12.55 60.83±12.58 33.34±9.39 33.13±9.66
ENAS [36] 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10
RandomNAS [28] 85.63±0.44 88.58±0.21 60.99±2.79 61.45±2.24 31.63±2.15 31.37±2.51
SETN [15] 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
GDAS [16] 90.00±0.21 93.51±0.13 71.14±0.27 70.61±0.26 41.70±1.26 41.84±0.90
DrNAS [9] 91.55±0.00 94.36±0.00 73.49±0.00 73.51±0.00 46.37±0.00 46.34±0.00
DARTS (1st) [31] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS (2nd) [31] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
Zero-cost NAS [1] 90.19±0.66 93.45±0.28 70.55±1.61 70.73±1.36 43.24±2.52 43.64±2.42
BaLeNAS (1st) 91.03±0.15 93.62±0.12 70.88±0.60 70.98±0.41 45.19±0.75 45.25±0.86
BaLeNAS (2nd) 91.32±0.09 94.02±0.14 71.53±0.08 71.93±0.27 45.39±0.17 45.48±0.39
BaLeNAS-TF 91.52±0.04 94.33±0.03 72.67±0.41 72.95±0.28 46.14±0.23 46.54±0.36
optimal 91.61 94.37 74.49 73.51 46.77 47.31

The best single run of BaLeNAS-TF achieves 94.37%, 73.22%, and 46.71% test accuracy on three datasets, respectively. Our
BaLeNAS-TF considers the Synflow based proxy for architecture selection in this experiment.

0 5 10 15 20 25 30 35 40
Epoch

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Er
ro

r

DARTS(1st) Valid
BaLeNAS(1st) Valid
DARTS(1st) Test
BaLeNAS(1st) Test

(a) First order approximation

0 5 10 15 20 25 30 35 40
Epoch

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Er
ro

r

DARTS(2nd) Valid
BaLeNAS(2nd) Valid
DARTS(2nd) Test
BaLeNAS(2nd) Test

(b) Second order approximation

Figure 1. Validation and test error of BaLeNAS and DARTS on the
search space 3 of NAS-Bench-1shot1.

containing 6,240, 29,160, and 363,648 architectures, respec-
tively, and the CIFAR-10 performance for all architectures
are reported. The architectures in each search space have
the same number of nodes and connections, making the
differentiable NAS could be directly applied to each space.

4.1.1 Reproducible Comparison on NAS Benchmarks

Table 1 summarizes the performance of BaleNAS on NAS-
Bench-201 compared with differentiable NAS baselines,
where the statistical results are obtained from 4 indepen-
dent search experiments with four different random seeds.
In our BaLeNAS, we consider the expectation of αθ with
argmax to get the valid architecture, while BaLeNAS-TF
consider the training-free proxies for the architecture selec-
tion, with the sample size is set as 100. As shown in Table 1,
BaLeNAS achieves the best results on the NAS-Bench-201
benchmark and greatly outperforms other baselines on all
three datasets. As described in Sec. 3, BaLeNAS is built
based on the DARTS framework, with only modeling the
architecture parameters into distributions and introducing
Bayesian learning rule for optimization. As shown in Ta-
ble 1, BaLeNAS with first and second-order approximations

Table 2. Ablation study on the architecture selection.

Method (size) Test Accuracy
CIFAR-10 CIFAR-100 ImageNet

Zero-cost NAS(10) 92.12±1.25 68.1±2.49 40.07±1.86
Zero-cost NAS(50) 92.52±0.05 70.27±0.25 42.92±0.95
Zero-cost NAS(100) 93.45±0.16 69.87±0.35 44.43±0.75
BaLeNAS-TF(10) 94.08±0.13 72.55±0.42 45.82±0.30
BaLeNAS-TF(50) 94.33±0.03 72.95±0.28 46.54±0.36
BaLeNAS-TF(100) 94.33±0.03 72.95±0.28 46.54±0.36

both outperform DARTS by large margins, verifying the
effectiveness of our method. More interesting, combining
with the training-free proxies, BaLeNAS-TF can achieve bet-
ter results, showing that apart from warmup, these proxies
could also assist differentiable NAS at architecture selection.
The best single run of our BaLeNAS-TF achieves 94.37%,
73.22%, and 46.71% test accuracy on three datasets, respec-
tively, which are state-of-the-art on this benchmark dataset.

We also conduct a comparison study on the NAS-Bench-
1shot1 dataset to further verify the effectiveness of our BaLe-
NAS which reformulates architecture search as a distribution
learning problem. We have compared BaLeNAS with the
baseline DARTS on the three search spaces of NAS-Bench-
1shot1 with tracking the validation and test performance
of the search architectures in every iteration. As shown in
Fig. 1, our BaLeNAS, without training-free proxies based
architecture selection, generally outperforms DARTS during
the architecture search in terms of validation and test error
in the most complicated search space 3, both with first and
second-order approximation. More specifically, our BaLe-
NAS significantly outperforms the baseline in the early stage,
demonstrating our BaLeNAS could quickly find the supe-
rior architectures and is more stable. The results on both
NAS-Bench-201 and NAS-Bench-1shot1 verify that, by for-
mulating the architecture search as a distribution learning

6

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#5389

CVPR
#5389

CVPR 2022 Submission #5389. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 3. Comparison results with state-of-the-art weight-sharing NAS approaches.

Method Test Error (%) Param FLOPs Search Architecture
CIFAR-10 CIFAR-100 ImageNet (M) (M) Cost Optimization

RandomNAS [28] 2.85±0.08 17.63 27.1 4.3 595 2.7 random
SNAS [45] 2.85±0.02 20.09 27.3 / 9.2 2.8 467 1.5 gradient
BayesNAS [53] 2.81±0.04 - 26.5 / 8.9 3.40 - 0.2 gradient
MdeNAS [52] 2.55 17.61 25.5 / 7.9 3.61 500 0.16 gradient
GDAS [16] 2.93 18.38 26.0 / 8.5 3.4 538 0.21 gradient
XNAS [34] 2.57±0.09 16.34 24.7 / 7.5 3.7 590 0.3 gradient
PDARTS [10] 2.50 16.63 24.4 / 7.4 3.4 543 0.3 gradient
PC-DARTS [46] 2.57±0.07 17.11 25.1 / 7.8 3.6 571 0.3 gradient
DrNAS [9] 2.54±0.03 16.30 24.2 / 7.3 4.0 644 0.4 gradient
DARTS+ [30] 2.50±0.11 16.28 - 3.7 - 0.4 gradient
DARTS (1st) [31] 2.94 - - 2.9 505 1.5 gradient
DARTS (2nd) [31] 2.76±0.09 17.54 26.9 / 8.7 3.4 530 4 gradient
BaLeNAS 2.50±0.07 16.84 25.0 / 7.7 3.82 593 0.6 gradient
BaLeNAS-TF 2.43±0.08 15.72 24.2 / 7.3 3.86 597 0.6 gradient

problem and introducing the Bayesian learning rule to op-
timize the posterior distribution, BaLeNAS can relieve the
instability and naturally enhance exploration to avoid local
optimum for differentiable NAS.

4.1.2 Ablation Study on the Architecture Selection

As described, our BaLeNAS-TF samples several architec-
tures from the optimized distribution and leverages the
training-free proxies for architecture selection, rather than
simply applying argmax on the mean. In this subsection,
we conduct ablation study to investigate the benefits of our
training-free based architecture selection. We considered 3
different training-free proxies as described in Sec. 2.3, in-
cluding SNIP, GraSP, and Synflow. We find that Synflow
is the most reliable proxies in the architecture selection,
as it achieves better performance than the remaining two
proxies for both zero-cost NAS and BaLeNAS, and also
consistently enhances the performance with the increase of
sample size. More detailed comparison can be found in the
Appendix. Zero-cost NAS [1] randomly generates samples
and calculates the scores based on the proxies for architec-
ture selection, while our BaLeNAS-TF generates samples
based on the optimized distribution (α∗θ | µ, σ2).

Table 2 compared zero-cost NAS and BaLeNAS-TF with
different sample sizes in the architecture selection. As shown,
the Synflow proxy can assist NAS as zero-cost NAS with dif-
ferent sample sizes achieve much better results than the Ran-
dom baseline in Table 1, and these proxies also enhance our
BaLeNAS, where our BaLeNAS-TF achieve higher accuracy.
These results again verified that the architecture selection
with train-free proxies can further improve the performance
for distribution learning based NAS. More interesting, Table
2 also showed that our BaLeNAS-TF outperformed zero-cost

NAS by a large margin, suggesting that our BaLeNAS can
converge to a competitive distribution.

4.2. Experiments on DARTS Search Space

To compare with the state-of-the-art differentiable NAS
methods, we applied BaLeNAS to the typical DARTS search
space [16,28,31] for convolutional architecture search, where
all experiment settings are following DARTS [31] for fair
comparisons as the same as the most recent works. Our
BaLeNAS-TF also considers the Synflow proxy in this ex-
periment. The architecture search in DARTS space generally
contains three stages: The differentiable NAS first searches
for micro-cell structures on CIFAR-10, and then stack more
cells to form the full structure for the architecture evaluation.
The best-found cell on CIFAR-10 is finally transferred to
larger datasets to evaluate its transferability.

4.2.1 Search Results on CIFAR-10

The comparison results with the state-of-the-art NAS meth-
ods are presented in Table 3. The best architecture searched
by our BaLeNAS-TF achieves a 2.37% test error on CIFAR-
10, which outperforms state-of-the-art NAS methods. We
can also see that both BaLeNAS-TF and BaLeNAS outper-
form DARTS by a large margin, demonstrating the effective-
ness of the proposed method. Besides, although BaLeNAS
introduced MCMC during architecture optimization, it is
still efficient in the sense that the whole architecture search
phase in BaLeNAS (2nd) only took 0.6 GPU days.

4.2.2 Transferability Results Analysis

Following DARTS experimental setting, the best-searched ar-
chitectures on CIFAR-10 are then transferred to CIFAR-100

7

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CVPR
#5389

CVPR
#5389

CVPR 2022 Submission #5389. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

0 5 10 15 20 25 30 35 40 45 50

Epoch

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
R

at
io

DARTS

BaLeNAS

Figure 2. The ratio of skip-connection the searched normal cells
during the architecture search in the DARTS space.

and ImageNet to evaluate the transferability. The comparison
results with state-of-the-art differentiable NAS approaches
on CIFAR-100 and ImageNet are demonstrated in Table 3.
As shown in Table2, BaLeNAS-TF achieves a 15.72% test
error on the CIFAR-100 dataset, which is a state-of-the-art
performance and outperforms peer algorithms by a large
margin. On the ImageNet dataset, the best-discovered ar-
chitecture by our BaLeNAS-TF also achieved a competitive
result with 24.2 / 7.3 % top1 / top5 test error, outperforming
or on par with all peer algorithms.

4.2.3 Analysis on the Effect of Exploration

Several recent works [9, 39, 51] point out that directly opti-
mizing architecture parameters without exploration easily
entails the rich-gets-richer problem, leading to those archi-
tectures that converge faster at the beginning while achieve
poor performance at the end of training, e.g. architectures
with intensive skip-connections [14, 30]. However, when the
number of skip-connections is larger than 3, the architec-
ture’s retraining accuracy is usually extremely low [30, 49].
To relieve this issue, BaLeNAS formulates the differentiable
neural architecture search as a distribution learning problem,
and this experiment verifies how the proposed formulation
naturally enhance the exploration to relieve this issue. Fig. 2
plots the ratio of skip-connection in the searched normal cell
for BaLeNAS and DARTS (the total number of operations
in a cell is 8). As shown, DARTS is likely to select more
than 3 skip-connection in the normal cell during the search.
In contrast, in the proposed BaLeNAS, the number of skip-
connections is generally less than 2 in the normal cell during
the search for BaLeNAS.

4.2.4 Tracking of the Hessian norm

As described in Section 2.1, a large Hessian norm deteriorate
the robustness of DARTS, and the incongruence between
Lval(w∗, α∗θ) and Lval(w∗, α∗) is not negligible if we could

Normal cell for DARTS Reduction cell for DARTS

Normal cell for BaLeNAS Reduction cell for BaLeNAS

Figure 3. Trajectory of the Hessian norm in DARTS space.

not maintain the maintains the Hessian norm at a low level.
The analysis in Sec. 3.2 and Eq. (19) shows that the loss
function of the proposed BaLeNAS implicitly controls the
trace norm ofH similar as [8, 9], helping stabilizing differ-
entiable NAS. We plot the trajectory of the Hessian norm of
BaLeNAS compared with the vanilla DARTS in Fig. 3. As
show, the Hessian norm in our BaLeNAS is always kept in
a low level. Although the Hessian norm of BaLeNAS also
increases with the supernet training similar as DARTS, BaLe-
NAS’s largest Hessian norm is still smaller than DARTS in
the early stage, showing the effectiveness of implicit regular-
ization of our BaLeNAS as described in Sec. 3.2.

5. Conclusion
In this paper, we have formulated the architecture opti-

mization in the differentiable NAS as a distribution learning
problem and introduced a Bayesian learning rule to opti-
mize the architecture parameters posterior distributions. We
have theoretically demonstrated that the proposed frame-
work can enhance the exploration for differentiable NAS
and implicitly impose regularization on the Hessian norm
to improve the stability. The above properties show that
reformulating differentiable NAS as distribution learning
is a promising direction. In addition, with leveraging the
training-free proxies, our BaLeNAS can select more compet-
itive architectures from the optimized distributions instead
of applying argmax on the mean to get the the discrete ar-
chitecture, so that alleviate the discretization instability and
enhance the performance. We operationalize the framework
based on the common differentiable NAS baseline, DARTS,
and experimental results on NAS benchmark datasets and
the common DARTS search space have verified the proposed
framework’s effectiveness.

Although BaLeNAS improves the differentiable NAS
baseline by large margins, it computational consumption
and memory consumption are similar with DARTS where
our BaLeNAS is built on. Further questions include how
to further decrease the computational and memory cost and
also eliminate the depth gap existing between architecture
search and evaluation in differentiable NAS [10].

8

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

CVPR
#5389

CVPR
#5389

CVPR 2022 Submission #5389. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References
[1] Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak,

and Nicholas D Lane. Zero-cost proxies for lightweight nas.
In ICLR, 2021. 2, 3, 5, 6, 7

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay
Vasudevan, and Quoc Le. Understanding and simplifying
one-shot architecture search. In International Conference on
Machine Learning, pages 549–558, 2018. 1, 2

[3] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Vari-
ational inference: A review for statisticians. Journal of the
American statistical Association, 112(518):859–877, 2017. 3

[4] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and
Daan Wierstra. Weight uncertainty in neural network. In
International Conference on Machine Learning, pages 1613–
1622, 2015. 3

[5] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimiza-
tion methods for large-scale machine learning. Siam Review,
60(2):223–311, 2018. 4

[6] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. ICLR,
2019. 1

[7] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural
architecture search on imagenet in four gpu hours: A theoreti-
cally inspired perspective. In ICLR, 2021. 2, 3

[8] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable
architecture search via perturbation-based regularization. In
ICML, 2020. 1, 2, 4, 5, 8

[9] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng
Tang, and Cho-Jui Hsieh. Drnas: Dirichlet neural architecture
search. In ICLR, 2021. 2, 4, 5, 6, 7, 8

[10] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive
differentiable architecture search: Bridging the depth gap
between search and evaluation. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1294–
1303, 2019. 7, 8

[11] Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng,
Xinyu Xiao, and Jian Sun. Detnas: Backbone search for object
detection. In Advances in Neural Information Processing
Systems, pages 6642–6652, 2019. 1

[12] Xuelian Cheng, Yiran Zhong, Mehrtash Harandi, Yunchao
Dai, Xiaojun Chang, Tom Drummond, Hongdong Li, and
Zongyuan Ge. Hierarchical Neural Architecture Search for
Deep Stereo Matching. In NeurIPS, 2020. 1

[13] Xuelian Cheng, Yiran Zhong, Mehrtash Harandi, Yuchao
Dai, Xiaojun Chang, Tom Drummond, Hongdong Li, and
Zongyuan Ge. Hierarchical neural architecture search for
deep stereo matching. In NeurIPS, 2020. 1

[14] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fair-
nas: Rethinking evaluation fairness of weight sharing neural
architecture search. arXiv preprint arXiv:1907.01845, 2019.
2, 8

[15] Xuanyi Dong and Yi Yang. One-shot neural architecture
search via self-evaluated template network. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 3681–3690, 2019. 6

[16] Xuanyi Dong and Yi Yang. Searching for a robust neural
architecture in four gpu hours. In IEEE Conference on Com-
puter Vision and Pattern Recognition. IEEE Computer Soci-
ety, 2019. 1, 6, 7

[17] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the
scope of reproducible neural architecture search. ICLR, 2020.
2, 5, 11

[18] Alex Graves. Practical variational inference for neural net-
works. In Advances in neural information processing systems,
pages 2348–2356, 2011. 3

[19] Minghao Guo, Zhao Zhong, Wei Wu, Dahua Lin, and Junjie
Yan. Irlas: Inverse reinforcement learning for architecture
search. In CVPR, 2019. 1

[20] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot
neural architecture search with uniform sampling. Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2019. 1

[21] Mohammad Khan and Wu Lin. Conjugate-computation vari-
ational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models. In Artifi-
cial Intelligence and Statistics, pages 878–887. PMLR, 2017.
4

[22] Mohammad Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin,
Yarin Gal, and Akash Srivastava. Fast and scalable bayesian
deep learning by weight-perturbation in adam. In Interna-
tional Conference on Machine Learning, pages 2611–2620,
2018. 2, 4

[23] Mohammad Emtiyaz Khan and Haavard Rue. Learning-
algorithms from bayesian principles. arXiv preprint
arXiv:2002.10778, 2020. 2, 4

[24] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr.
Snip: Single-shot network pruning based on connection sen-
sitivity. In International Conference on Learning Representa-
tions, 2019. 3, 5

[25] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang,
Xiaodan Liang, Liang Lin, and Xiaojun Chang. Block-wisely
supervised neural architecture search with knowledge distil-
lation. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020, pages 1986–1995, 2020. 1

[26] Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng,
Bing Wang, Xiaodan Liang, and Xiaojun Chang. Bossnas:
Exploring hybrid cnn-transformers with block-wisely self-
supervised neural architecture search. CoRR, abs/2103.12424,
2021. 1

[27] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang,
Zhihui Li, and Xiaojun Chang. Dynamic slimmable net-
work. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, virtual, June 19-25, 2021, pages
8607–8617. Computer Vision Foundation / IEEE, 2021. 1

[28] Liam Li and Ameet Talwalkar. Random search and repro-
ducibility for neural architecture search. In UAI, 2019. 1, 6,
7

[29] Xiang Li, Chen Lin, Chuming Li, Ming Sun, Wei Wu, Junjie
Yan, and Wanli Ouyang. Improving one-shot nas by suppress-
ing the posterior fading. In Proceedings of the IEEE/CVF

9

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

CVPR
#5389

CVPR
#5389

CVPR 2022 Submission #5389. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Conference on Computer Vision and Pattern Recognition,
pages 13836–13845, 2020. 2, 4

[30] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He,
Weiran Huang, Kechen Zhuang, and Zhenguo Li. Darts+: Im-
proved differentiable architecture search with early stopping.
arXiv preprint arXiv:1909.06035, 2019. 2, 7, 8

[31] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable architecture search. In ICLR, 2019. 1, 2, 4, 5,
6, 7

[32] Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J Crow-
ley. Neural architecture search without training. arXiv
preprint arXiv:2006.04647, 2020. 2, 3

[33] Xiangming Meng, Roman Bachmann, and Moham-
mad Emtiyaz Khan. Training binary neural networks using
the bayesian learning rule. arXiv preprint arXiv:2002.10778,
2020. 2

[34] Niv Nayman, Asaf Noy, Tal Ridnik, Itamar Friedman, Rong
Jin, and Lihi Zelnik. Xnas: Neural architecture search with
expert advice. In Advances in Neural Information Processing
Systems, pages 1975–1985, 2019. 7

[35] Kazuki Osawa, Siddharth Swaroop, Mohammad Emtiyaz E
Khan, Anirudh Jain, Runa Eschenhagen, Richard E Turner,
and Rio Yokota. Practical deep learning with bayesian princi-
ples. In Advances in neural information processing systems,
pages 4287–4299, 2019. 2, 4

[36] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameter shar-
ing. In International Conference on Machine Learning, pages
4092–4101, 2018. 1, 2, 6

[37] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. AAAI, 2019. 1

[38] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang,
Zhihui Li, Xiaojiang Chen, and Xin Wang. A comprehensive
survey of neural architecture search: Challenges and solutions.
arXiv preprint arXiv:2006.02903, 2020. 1

[39] Yao Shu, Wei Wang, and Shaofeng Cai. Understanding ar-
chitectures learnt by cell-based neural architecture search. In
International Conference on Learning Representations, 2020.
2, 4, 8

[40] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik,
Margret Keuper, and Frank Hutter. Nas-bench-301 and the
case for surrogate benchmarks for neural architecture search.
arXiv preprint arXiv:2008.09777, 2020. 11

[41] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114, 2019. 1

[42] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya
Ganguli. Pruning neural networks without any data by itera-
tively conserving synaptic flow. Advances in Neural Informa-
tion Processing Systems, 33, 2020. 3, 5

[43] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking
winning tickets before training by preserving gradient flow. In
International Conference on Learning Representations, 2020.
3, 5

[44] Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng
Tang, and Cho-Jui Hsieh. Rethinking architecture selection
in differentiable nas. In ICLR, 2021. 1, 2, 3

[45] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas:
stochastic neural architecture search. ICLR, 2019. 1, 7

[46] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial chan-
nel connections for memory-efficient architecture search. In
ICLR, 2020. 7

[47] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real,
Kevin Murphy, and Frank Hutter. Nas-bench-101: Towards
reproducible neural architecture search. In ICML, pages 7105–
7114, 2019. 5, 11

[48] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat,
and Mathieu Salzmann. Evaluating the search phase of neural
architecture search. In ICLR, 2020. 1

[49] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Mar-
rakchi, Thomas Brox, and Frank Hutter. Understanding and
robustifying differentiable architecture search. In ICLR, 2020.
1, 2, 3, 5, 8

[50] Arber Zela, Julien Siems, and Frank Hutter. Nas-bench-
1shot1: Benchmarking and dissecting one-shot neural archi-
tecture search. In ICLR, 2020. 2, 5, 11

[51] Miao Zhang, Huiqi Li, Shirui Pan, Taoping Liu, and Steven
Su. One-shot neural architecture search via novelty driven
sampling. In International Joint Conference on Artificial
Intelligence, 2020. 2, 4, 8

[52] Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang Zhang,
Jianzhuang Liu, and Qi Tian. Multinomial distribution learn-
ing for effective neural architecture search. In International
Conference on Computer Vision (ICCV), 2019. 7

[53] Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan.
Bayesnas: A bayesian approach for neural architecture search.
In International Conference on Machine Learning, pages
7603–7613, 2019. 7

[54] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 8697–8710, 2018.
1

10

	. Introduction
	. Preliminaries
	. Differentiable Architecture Search
	. Bayesian Deep Learning
	. Training Free Proxies for NAS

	. The Proposed Method: BaLeNAS
	. Formulating NAS as Distribution Learning
	. Natural-Gradient VI for NAS
	. Architecture Selecting from the Distribution

	. Experiments and Results
	. Experiments on Benchmark Datasets
	Reproducible Comparison on NAS Benchmarks
	Ablation Study on the Architecture Selection

	. Experiments on DARTS Search Space
	Search Results on CIFAR-10
	Transferability Results Analysis
	Analysis on the Effect of Exploration
	Tracking of the Hessian norm

	. Conclusion

