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Abstract

Automatic generation of ophthalmic reports using data-
driven neural networks has great potential in clinical prac-
tice. When writing a report, ophthalmologists make infer-
ences with prior clinical knowledge. This knowledge has
been neglected in prior medical report generation meth-
ods. To endow models with the capability of incorporat-
ing expert knowledge, we propose a Cross-modal clinical
Graph Transformer (CGT) for ophthalmic report genera-
tion (ORG), in which clinical relation triples are injected
into the visual features as prior knowledge to drive the de-
coding procedure. However, two major common Knowl-
edge Noise (KN) issues may affect models’ effectiveness.
1) Existing general biomedical knowledge bases such as the
UMLS may not align meaningfully to the specific context
and language of the report, limiting their utility for knowl-
edge injection. 2) Incorporating too much knowledge may
divert the visual features from their correct meaning. To
overcome these limitations, we design an automatic infor-
mation extraction scheme based on natural language pro-
cessing to obtain clinical entities and relations directly from
in-domain training reports. Given a set of ophthalmic im-
ages, our CGT first restores a sub-graph from the clini-
cal graph and injects the restored triples into visual fea-
tures. Then visible matrix is employed during the encod-
ing procedure to limit the impact of knowledge. Finally,
reports are predicted by the encoded cross-modal features
via a Transformer decoder. Extensive experiments on the
large-scale FFA-IR benchmark demonstrate that the pro-
posed CGT is able to outperform previous benchmark meth-
ods and achieve state-of-the-art performances.

1. Introduction
Fundus Fluorescein Angiography (FFA) is one of the es-

sential ophthalmic imaging examinations in clinical prac-

*Corresponding author.

tice. However, writing reports to summarize findings from
dozens of ophthalmic images during an examination is
time-consuming and error-prone, especially for inexperi-
enced ophthalmologists. With the success of data-driven
neural networks [11, 19, 22, 25, 42] in many real-life sce-
narios, researchers and ophthalmologists start to investigate
how to apply artificial intelligent (AI) models in clinical
ophthalmic practice and acquire significant achievements
[3]. Automatic generation of ophthalmic reports offers the
possibility of reducing the heavy workloads of ophthalmol-
ogists. Furthermore, the predicted reports can highlight ab-
normalities for the ophthalmologists and provide a ratio-
nale for disease diagnosis; hence, automatic ophthalmic re-
port generation has attracted increasing research interest for
AI-based clinical decision support, as well as presenting a
meaningful opportunity to explore the integration of vision
and language modalities in neural network models.

Despite significant progress in generic image caption-
ing models [2, 8], when transferring them into medical
knowledge-driven tasks, they fail to achieve promising and
competitive performance due to a lack of prior medical
knowledge. When describing ophthalmic images, ordinary
people can only recognize the common visual information,
such as the shape and color, while ophthalmologists make
inferences with their prior clinical knowledge. For models
to achieve this capability, recent work explores the incor-
poration of medical knowledge to enhance diagnostic mod-
els [20, 23, 26, 41].

On the one hand, researchers [20, 23] have explored
graph structure weights as posterior knowledge to allevi-
ate the textual bias. In each graph, the nodes are observed
abnormalities selected from prior knowledge, such as exter-
nal medical corpus, and the edges are the predicted weights
correlating each pair abnormalities. However, the weight
graph limits the effectiveness of the knowledge graph from
two aspects. Firstly, some entities are extracted from the
external medical corpus or knowledge graph database sepa-
rated from the training corpus. These entities will bring in a



heterogeneous embedding space [27] which makes the em-
bedding vectors inconsistent. Secondly, there are no ground
truth weights to supervise the message passing procedure,
and the model is still prone to be distracted by the visual
bias in medical images [26]. On the other hand, a uni-
versal graph is proposed with prior knowledge on 20 chest
findings [41] to enhance models. Since these findings are
not always depicted in one report, incorporating all this
knowledge may divert the visual features from their orig-
inal meaning.

To address these issues, we propose a Cross-modal clin-
ical Graph Transformer (CGT) for ophthalmic report gen-
eration (ORG). In particular, we first invoke an information
extraction scheme based on a natural language processing
pipeline, including named entity recognition and entity link-
ing, to obtain a clinical knowledge graph. More details will
be introduced in Section 3.2. As discussed in [15], the struc-
tured clinical information behind the free-text reports can
enhance the diagnostic methods. In addition, the entities
and relations in our clinical graph are in the homogeneous
embedding space with the training corpus. Given a set of
ophthalmic images, the extracted visual features are trans-
formed to a compressed visual token and a sub-graph with
relevant restored triples. Since the sub-graph is not guaran-
teed to be a completely accurate representation of the given
images and natural noise exists in the clinical graph, we
adopt a cross-modal encoder to encode the universal fea-
ture token and sub-graph information. To avoid influence
from unrelated entities, a visible matrix is introduced dur-
ing the cross-modal encoding process. Finally, reports are
generated via a Transformer [34] decoder.

We conduct extensive experiments on the publicly avail-
able FFA-IR benchmark [21]. Experiments show that our
CGT achieves the state-of-the-art performance of predicted
reports under four automatic evaluation metrics and high
AUC scores for the restored triples, providing a solid ratio-
nale for the explanation.

2. Related Work

2.1. Medical Report Generation

Most existing medical report generation (MRG) mod-
els are proposed to describe radiology images, especially
Chest X-Ray images [17], due to the limited access to med-
ical resources. Recently, various medical report genera-
tion datasets have been released targeting on different med-
ical modals, such as FFA images [21], lung CT scans [23]
and color fundus photography (CFP) [14], and attracted
increasing attention. Inspired by work on image caption-
ing, researchers have adopted a hierarchical recurrent net-
work (HRNN) to describe medical images at the begin-
ning [16,40]. In these HRNNs, the visual features extracted
by a convolution neural network are attended with textual

information to generate reports. Different to generic image
captioning, there are data biases stemming from both vi-
sual and textual information. The textual data bias leads to
similar sentences among different reports. Therefore, Cao
et al. [6], and Li et al. summarized a set of sentence tem-
plates and used the retrieved semantic features to fill the
templates and generate a report. With the success of Trans-
former in the vision-and-language field, many Transformer-
based MRG models [1, 9, 23, 30] have been proposed to re-
place the LSTM since Transformer is one of the most ef-
fective encoder-and-decoder frameworks. Chen et al. pro-
posed a memory matrix to drive the decoding procedure.
Alfarghaly et al. introduced 105 tags and concatenated the
weighted tag embedding with visual features for decoding.
Unlike others, Wang et al. firstly employs a selective search
algorithm to extract the region-level image features to im-
prove the MRG models. Since medical report generation is
highly knowledge-driven, researchers have started incorpo-
rating medical knowledge to enhance the models.

2.2. Medical Knowledge Enhanced Models
In this section, we will introduce medical knowledge

enhanced models for medical report generation and other
medical domain tasks, medical QA, or memorization. The
incorporated medical knowledge can be divided into three
groups.

The first kind is from radiologists’ working patterns [23,
26]. In clinical practice, radiologists read images and write
reports in a specific pattern to remind them of not missing
any part of the images. After browsing the whole image,
radiologists will focus on the suspicious regions. To make
the model achieve this capability, Li et al. introduced two
kinds of auxiliary signals to guide the MRG model. Simi-
larly, Liu et al. adopted both posterior and prior knowledge
to imitate the pattern with retrieved reports and a universal
knowledge graph. Secondly, researchers explored the clin-
ical knowledge behind the free-text reports to drive MRG
models. Both [19] and [23] extract normal and abnormal
terminologies from corpus as nodes and automatically pre-
dict weights between these findings as edges to construct a
knowledge graph. This graph worked as prior knowledge
to drive the decoding procedure and restore a unique sub-
graph for each case. In contrast, Zhang et al. [41] and Liu
et al. adopted an universal graph covering 20 findings to en-
hance the MRG models. In the last, the existing biomedical
knowledge base is adopted to incorporate medical knowl-
edge. The unified medical language system (UMLS) [5]
is the largest biomedical knowledge base and is adopted
in [27] and [12] to enhance pretrained medical models for
medical QA tasks. However, utilizing the existing knowl-
edge base will bring in inconsistencies due to the heteroge-
neous embedding space arising from vocabulary and con-
text mismatch. Since the entities and relations in UMLS
are derived independently of the training corpus, when em-



Figure 1. Illustration of our proposed cross-modal clinical graph transformer. Visual features extracted by an I3D are utilized to restore
sub-graph information and compressed to one visual token. Then the cross-modal information encoded with visible matrix masked multi-
head attention is used for report generation.

bedding node information, the embedded token vectors are
inconsistent. Additionally, utilizing the full UMLS in MRG
tasks will place a burden on the computation resources since
it has 13, 555, 037 triples, and most of them are irrelevant to
our task.

3. Methodology
In this section, we introduce the clinical graph extraction

scheme, and the process is shown in Figure 2. Then we de-
tail the implementation of CGT (see Figure 1 for the overall
framework).

3.1. Notation
In ORG task, given a set of FFA images which repre-

sented by I = {x1, x2, . . . , xNi
}, where xj and Ni re-

fer to the j-th FFA image and the number of total images,
model is asked to generate a descriptive report encoded
as R = {y1, y2, . . . , yNr}. While we denote the ground
truth report by R̂ = {ŷ1, ŷ2, . . . , ŷNr̂}. We extract entities
and relations from all the training R̂ to construct a clinical
graph (CG), denoted as G, which is a collection of triples
ϵ = (es, r, eo), where es and eo denote the names of sub-
jective and objective entities, and r is the relation between
them. All the triples are in CG, i.e., ϵ ∈ G. In this paper,
English tokens are taken at the word-level and each token
yi, ei and ri are in the same vocabulary V whose size is dV
to make all the embedding vectors consistent.

3.2. Clinical Graph Extraction Scheme
Recently, extracting clinical information from medical

reports has received increasing attention [15, 38]. The
structured clinical information within the free-text reports
is valuable for clinical reasoning and a variety of critical

Figure 2. Process for extracting entities and relations from oph-
thalmic reports.

healthcare applications. We believe that ORG is one such
application. However, due to the huge domain discrepancy
between different medical models, transferring information
from existing biomedical knowledge databases is unlikely
to be effective. In this subsection, we will introduce our in-
formation extraction scheme to detail how we construct a
clinical graph G from ophthalmic reports. This scheme is
implemented by a SpaCy [29] natural language parser in an
AI accelerating human-in-the-loop manner [39]. Notably,
the ophthalmic reports used in this scheme are all derived
from the training set to avoid target leakage.

To save the writing space, we take one sentence, “Spotted



Table 1. Statistics of our clinical graph.

# Entities # Relations # Triples
1,811 29 4,823

obscured fluorescence (hemorrhage?) was seen at the infe-
rior edge of the macular arch ring during left eye imaging.”
from an ophthalmic report as an example, and the whole
process is shown in Figure 2. Our scheme contains seven
steps by following: Tokenization, taking the sentence into
word-level and segmenting tokens into words, punctuation
marks etc; Part-of-speech tagging, before automatically
recognizing the relations between each pair tokens, we as-
sign work types to each token, such as verb or nun; De-
pendency parsing, assigning syntactic dependency labels
to describe the relations between individual tokens, such
as ‘spotted’ is the attributive of subjective ‘fluorescence’;
Lemmatization, digging the base form of tokens. For ex-
ample, the lemma of ‘was’ is ‘is’; Sentence boundary de-
tection, finding individual sentences to prevent the calcula-
tion across sentences; Named entity recognition, we create
a user-dictionary to assist the machine in recognizing rare
ophthalmic terminologies, such as ‘macular’; Entity link-
ing, linking entities with their relation to creating triples.
Triples extracted from the sample are “fluorescence, seen,
macular” and “hemorrhage, seen, macular”, respectively.
Then we collect all the unique triples to construct the whole
clinical graph G. In total, our clinical graph contains 4, 823
triples, and more details are presented in Table 1.

3.3. Cross-modal Clinical Graph Transformer

The traditional report generation models are based on
an encoder-decoder architecture. Among all the encoder-
decoder frameworks, Transformer [34] has achieved great
success in various tasks. Therefore, we adopt a Trans-
former, the backbone of our proposed CGT, to describe oph-
thalmic images from the FFA-IR benchmark. As shown
in Figure 1, our CGT is composed of a visual extractor, a
graph construction module, a cross-modal encoder, and a
language decoder.
Visual Extractor Different from describing radiology im-
ages, the average number of input images for each case is 97
in the FFA-IR. Despite the benchmark proposed by [21] is
adopting lesion features via a Faster-RCNN [33], we utilize
an I3D1 model pretrained on Kinetics [7] to extract visual
features from given images. Due to the reason that the en-
tities in our CG contain both abnormalities and normal tis-
sues, while the lesion information provided by the FFA-IR
is all about the lesions or abnormalities. This data bias may
mislead the message passing inter the CG.

Since the image numbers are different among each case,
we first transform the given images and set a fixed length

1https://github.com/piergiaj/pytorch-i3d

of 96 for all the input images. For those whose length is
more than 96, we randomly down-sample some images. In
contrast, we repeat the whole sequence until its length is
96, when its length is below the threshold. The I3D model
extracts one feature from every eight images, and the final
visual features can be denoted as fV = {f1, f2, . . . , f12},
where fi ∈ R12×1024.
Graph restoration module The graph construction mod-
ule is proposed to restore a sub-graph according to the vi-
sual features generated by the visual extractor. The sub-
graph encoded as Gs = ϵ1, ϵ2, . . . , ϵNgs is a combination of
triples. The whole process can be written as follows:

Gs = max(0;BN(conv3×3(fV )))Wf + bf (1)

where max(0; ∗) and BN represent the ReLU activation
function and batch normalization operation, respectively;
Wf ∈ R1024×dV denotes learnable matrix for linear trans-
formation, while bf refers to the bias terms. Firstly, we
adopt a convolution layer with a 3 × 3 kernel followed by
an operation sequence of batch normalization and ReLU
activation to fuse the temporal information inside the fv .
Then the output has been projected by a linear transforma-
tion layer to the dimension of d = dV . As mentioned, all
the tokens in CG are in the same vocabulary with the train-
ing corpus; then, each vector is used to restore the index of
entity or relation in V .
Cross-modal Encoder In this module, the visual features,
and the graph information are encoded by self-attention
mechanism [34]. The input of the cross-modal encoder
comes from the visual extractor and the graph restoration
module. As mentioned in [26, 37], serve visual bias exists
in most medical datasets for two reasons: the abnormal re-
gions only take a small portion of the whole image, and the
human tissues are highly similar. To alleviate the impact
of visual bias, we compress the fv into one compressed vi-
sual token, encoded as Tv ∈ Rd, and concatenate it with
a sub-graph before fed to the embedding layer. The com-
pressed visual token has two more advantages. Firstly, it
promises that the sub-graph information is dominant to the
input features. More importantly, it can be used to resist the
inevitable noise inside the clinical graph adaptively since
the knowledge graph can not be completely accurate.

We utilize an ‘argmax’ function on Gs and transform it
into the one-hot format to represent the sub-graph, repre-
sented as Tg = {t1, t2, . . . , tNt|ti ∈ Rdv}. After con-
catenation, we feed the cross-modal tokens, encoded as
T = {Tv, Tg}, to the embedding layer. The function of
the embedding layer is to convert the cross-modal tokens
into embedding representations. Similar to the BERT [10],
the embedding representation of CGT is the sum of three
parts. Firstly, each token in Tg is converted to an embed-
ding vector of dimension d = 512 via a trainable lookup
table. Different from BERT, the classification tag [CLS]



is replaced by Tv . Secondly, position embedding is added
to the token embedding, and the formulation is written as
follows:

PEpos,2i = sin(pos/10002i/d) (2)

PEpos,2i+1 = cos(pos/10002i/d) (3)

where pos is the position of each token, i is the index of
embedding dimension, and d is the dimension of the hidden
states. Lastly, segment embedding is employed to identify
each sentence. Notably, we find that most sentences in the
training corpus contain two triples. Therefore, we consider
every six tokens as a sentence. The T is marked with a
sequence of segment tags, {A,B, . . . , B,C, . . . , C}, where
A represents the compressed visual token.

Then the embedded tokens are encoded by a cross-modal
encoder, the whole process of an encoder layer can be writ-
ten as:

fe(t) = BN(FFN(eattn) + eattn) (4)
eattn = BN(MMHA(t) + t) (5)

Where FFN represents the feed forward layer, and MMHA
represents the mask multi-head attention. The feed forward
layer contains two linear layers with ReLU activation. It
makes sure the dimensions of transformer input and output
are the same. Another difference between our CGT and
Transformer is that we adopt MMHA instead of MHA during
the encoding process and introduce a visible matrix, Mv ,
to limit the impact of unrelated triples. The computation
between unrelated triples is useless and untrue, which may
also lead the changes to the original meanings. The visible
matrix is presented in Figure 1, and it can limit the message
passing inter the sentence or between the universal token.
The MMHA can be written as:

ht
i = softmax(

Qi(K
t)

′
Mv√

d
)Vt (6)

where {Q,K∗,V∗} are the packed d-dimensional Query,
Key, Value vectors.
Language Decoder We adopt the vanilla Transformer de-
coder as our language decoder. The whole process of a de-
coder layer can be written as:

fd(y) = BN(FFN(ecattn) + ecattn) (7)
ecattn = BN(MHA(eattn, fe(t)) + eattn) (8)
eattn = BN(MMHA(y) + y)) (9)

where MMHA represents the original masked multi-head
self-attention, y is the input of decoder and yt is the t−th
input token in time step t. Cross-attention sublayer re-
ceives the output of encoder fe(t) and previous sublayer
eattn. In where, for each head, {Q,K∗,V∗} comes from

Q = Wq ∗ eattn, K = Wk ∗ fe(x), and V = Wv ∗ fe(x),
where W∗ is the weight of a Linear layer. The fd(y) will be
sent to a Linear & Log-Softmax layer to get the output of
target sentences. Notably, only token embedding is adopted
during the decoding procedure. The entire recursive gener-
ation process can be written as follows:

p(R̂|I) =
∏
t=1

p(ŷt|ŷ1, . . . , ŷt−1, I) (10)

Objectives Similar to the image captioning tasks, existing
medical report generation approaches adopt cross-entropy
loss to evaluate the differences between the predicted and
the ground truth reports at the word level. Although many
works attempt to explore auxiliary signals to drive the re-
port generation, these signals can not supervise the learning
process. For example, Li et al. [23] introduced an inter-
nal visual signal to locate the abnormal regions. However,
there is no ground truth for the abnormal region bounding.
Similarly, the accurate weights correlated paired findings
in [19,41] are also unavailable. Therefore, the effect of aux-
iliary signals has been limited.

In this paper, we additionally introduce a triple restora-
tion loss [12] to supervise the sub-graph restoration pro-
cess since our clinical graph extraction scheme provides the
ground truth structured information. It guarantees that the
accurate graph information will be encoded with the visual
features for report generation and is also what makes this
method so effective. Specifically, the total loss function
used in our CGT can be written as follows:

LRG = λCELCE + λTRLTR (11)

where λCE and λTR are hyper-parameters balancing two
terms. The first loss term LCE is the cross-entropy loss.
The second loss term is the triples restoration loss function
to measure the energy of a knowledge triple. The specific
process can be written as follows:

LTR =
∑
ϵ∈G

max(d(ϵ)− d(f(ϵ)) + γ, 0) (12)

where ϵ = (es, r, eo), d(ϵ) = |es + r − eo|, γ > 0 is a
margin hyper-parameter, f(ϵ) is an entity replacement op-
eration that the subjective or objective entity in a triple is re-
placed and the replaced triple is an invalid triple in G. Here,
es,e and eo are the indexes of the subjective, relation and
objective tokens in V .

4. Experiments
4.1. FFA-IR Benchmark

In this paper, we adopt a recently released largest oph-
thalmic report generation dataset to date, i.e., FFA-IR [21],



to verify the effectiveness of our approach. FFA-IR con-
tains 10, 790 reports and 1, 048, 584 FFA images. In addi-
tion, FFA-IR provides bilingual reports for each case and
12, 166 lesion bounding information, which can explain the
diagnosis process. For a fair comparison, we report our re-
sults on the official splits, in which 8,016 reports/99,161
images for training, 1,069 reports/93,274 images for valida-
tion, and 1,604 reports/138,026 images for testing. Similar
to the settings in Section 3.2, all the tokens are converted
into lower cases, and those whose frequency of occurrence
is less than three are removed, resulting in 3, 241 tokens in-
cluding both words and marks. We additionally add [PAD],
[SOS], [EOS] and [UNK] tags whose indexes are 0, 1, 2
and 3 into the vocabulary, resulting in 3, 245 tokens in V . In
addition, FFA-IR is the only publicly available ORG dataset
based on our knowledge.

4.2. Baseline, Evaluation Metrics, and Settings

Along with the dataset, three benchmark models, which
adopt spatial features via a ResNet [13], temporal features
via an I3D, and lesions features via a Faster-RCNN, have
been released. In this paper, we adopt the combination of
I3D and Transformer as our baseline method for two rea-
sons. On the one hand, the lesion information does not ex-
plain normal tissues, which take a considerable portion in
our CG’s nodes; On the other hand, the critical information
inside the spatial features are easily inundated by global fea-
tures during the feature fusion process [21].

We adopt two kinds of metrics to validate the effective-
ness of this method. The widely used natural language gen-
eration (NLG) metrics2, including BLEU [31], CIDEr [35],
METEOR [4] and ROUGE-L [24], are adopted to evalu-
ate the quality of predicted reports in word-level. Cider
is adopted as the main metric since BLEU and METEOR
are mainly used for machine translation evaluation, and
ROUGE-L is designed for summaries. We also figure the
micro-average of receiver operation characteristic (ROC)
curve and report the area under the ROC curve (AUC) to
evaluate the accuracy of the restored sub-graph.

The whole network is implemented by Pytorch [32]
based on Python 3.7 and trained on two GeForce RTX
2080Ti GPUs. The images are resized to 224 before be-
ing fed into the I3D, and the batch size is 8. The maximum
length of T is 90, padded with tag [PAD]. The embedding
space for both visual and graph tokens is 512, and the di-
mension of the hidden states in the Transformer is also 512.
Both encoder and decoder consist of six blocks and 8 heads.
The ADAM [18] is utilized for optimizing all the parame-
ters in our CGT, and the learning rate is 1e− 4. The whole
network is trained for 50 epochs. We adopt greedy decoding
when testing.

2https://github.com/tylin/coco-caption

Figure 3. Micro-average of receiver operating characteristic curve
for sub-graph restoration.

4.3. Main Results

Report generation In Table 2, we compare our CGT
with a wide range of existing models. I3D+T [21] and
Faster+T [21] are the two benchmark models achieving the
state-of-the-art performance on FFA-IR dataset. R2Gen [9]
and CoAtt [16] are the state-of-the-art radiology report
generation models. The remaining presented works are
from image captioning approaches. As shown in Table 2,
our CGT outperforms the state-of-the-art method across all
NLG metrics. The improved performance of CGT demon-
strates the validity of our practice in incorporating prior
medical into ophthalmic report generation.
Sub-graph restoration In Figure 3, we show the micro-
average of ROC for sub-graph restoration and present the
AUC scores when the proposed model is trained with triple
loss restoration loss or not. With the triple restoration loss,
the AUC score increased from 0.55 to 0.78 significantly.
This improvement demonstrates the effectiveness of triple
restoration loss and the accuracy of our restored sub-graph.
Without the triple restoration loss, the restored sub-graph is
similar to a sequence of random triples. It also verifies the
importance of our clinical graph extraction scheme.

4.4. Quantitative Analysis

In Table 3, we present the results of quantitative anal-
ysis to investigate the contribution of each component in
our CGT. The baseline model is a combination of I3D and
Transformer proposed by [21].
Effect of clinical graph In this section, we evaluate the ef-
fectiveness of the proposed clinical graph, including triples
and triples restoration loss.

Comparing the results in baseline and (a) in Table 3, we
can find that without the triple restoration loss, the automat-
ically restored sub-graph fails to drive the model to generate
an accurate report. In (b), we randomly restore a sub-graph
instead of based on the input visual features. Along with
the AUC scores in Figure 3, these demonstrate that only the



Table 2. The results of NLG metrics of our proposed CGT and other state-of-the-art methods on the FFA-IR dataset. Bold numbers denote
the best performance in their columns.

Methods Year BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr
CoAtt [16] 2018 0.313 0.200 0.144 0.111 0.197 0.247 0.254
Show-Tell [36] 2015 0.306 0.197 0.142 0.109 0.191 0.247 0.232
Top-Down [2] 2018 0.320 0.217 0.162 0.127 0.207 0.289 0.363
Gounded [43] 2020 0.396 0.319 0.261 0.218 0.229 0.353 0.576
AdaAtt [28] 2017 0.292 0.181 0.127 0.095 0.205 0.236 0.234
R2Gen [9] 2020 0.330 0.225 0.167 0.132 0.210 0.296 0.367
I3D+T [21] 2021 0.428 0.341 0.276 0.229 0.213 0.334 0.561
Faster+T [21] 2021 0.443 0.355 0.288 0.240 0.205 0.341 0.590
CGT Ours 0.456 0.363 0.295 0.243 0.227 0.345 0.599

Table 3. Quantitative analysis and human study of proposed method, where CVT, VM and TRL are the short for compressed visual token,
visible matrix and triple restoration loss, respectively.

Settings I3D Triples CVT VM TRL CIDEr BLEU-4 ROUGE METEOR Hit(%)
Baseline ✓ 0.561 0.229 0.334 0.213 21.6

(a) ✓ 0.223 0.087 0.218 0.200 -
(b) Random 0.223 0.085 0.220 0.204 -
(c) ✓ ✓ 0.561 0.226 0.287 0.209 -
(d) ✓ ✓ ✓ 0.569 0.231 0.309 0.228 -
(e) ✓ ✓ ✓ 0.586 0.240 0.332 0.225 -
(f) ✓ ✓ ✓ 0.573 0.242 0.324 0.226 -

CGT ✓ ✓ ✓ ✓ 0.599 0.243 0.345 0.227 44.7

relevant and accurate prior knowledge can improve the ef-
fectiveness of diagnostic models. Encouragingly, Table 3
Baseline and (c) illustrates that the results of utilizing the
clinical graph only are competitive to the baseline. These
results verify that the triples restoration loss can supervise
the sub-graph restoration process and guarantee the accu-
racy of the incorporated prior knowledge.

Effect of visible matrix Visible matrix is another essen-
tial component in our CGT. This concept is widely used in
knowledge-enhanced pretraining works [12, 27] with vari-
ous formulations. In this paper, the visible matrix is adopted
during the cross-modal encoding process for two purposes.
On the one hand, we hope it can limit the impact of unre-
lated triples; On the other hand, we want the message can
pass between the visual features and each triple.

The results between (c) and (d), (e) and CGT in Table 3
demonstrate the effectiveness of the visible matrix. We can
see that the performances increase substantially when inte-
grating visible matrix with (c) and (e), e.g., 0.561 → 0.569
and 0.586 → 0.599 in CIDEr score. Firstly, by comparing
the results of (c) and (d), the visible matrix limits the impact
from unrelated triples and greatly enhances the information
interaction between related triples. Therefore, we specu-
late that the entity and relation representations can be well
trained and improve the quality of predicted reports. When
working in CGT, the visible matrix additionally facilitates

the message passing between the visual features and each
triple. There is inevitable noise among the knowledge graph
since the relation is not a ‘hard’ label. Although triple rep-
resentations can be well learned, the triple may not be rele-
vant to the input case. Therefore, the visual features play a
role in de-noise adaptively. Furthermore, the visible matrix
makes sure that the cross-modal signals can interact with
each other.

Effect of compressed visual token The effectiveness of the
compressed visual token is verified when comparing the re-
sults of (c), (e), and (f) in Table 3. As discussed, there
are always noises existing in a knowledge graph. There-
fore, one of the purposes for proposing a compressed visual
token is to keep the accurate signals from original mean-
ings when the sub-graph is inaccurate. When integrating
the compressed visual token, the quality of predicted re-
ports improves significantly comparing (c) and (e) and out-
performing the baseline method. It demonstrates the im-
portance of visual signals in the T . We also conducted an
experiment to compare the performances of injecting prior
knowledge into the compressed visual token and temporal
features ((e) and (f)). We can find that the performances
decrease slightly when using all the temporal features, e.g.,
0.586 → 0.573 in the CIDEr score. We speculate the reason
is that too many visual tokens will impair the effectiveness
of prior knowledge. Therefore, using the compressed visual



Figure 4. Illustrations of reports from the ground truth and CGT, and the restored sub-graph. The blue, red, and greed triples represent the
true positive, false positive, and false negative.
token can make the prior knowledge dominant. Notably, the
visible matrix is modified when using all temporal features.
Human study In this section, we invited three senior oph-
thalmologists to evaluate the quality of predicted reports by
the baseline model and our CGT. As shown in Table 3, oph-
thalmologists regarded that 44.7% of predicted reports by
CGT can describe the given FFA images more accurately.
The human study results demonstrate that our CGT outper-
forms the baseline model in both NLG metrics and clinical
practice. Ophthalmologists also mentioned that there were
33.7% of predicted reports by both methods that failed to
describe any key finding.
4.5. Qualitative Analysis

In this section, we conduct qualitative analysis for better
understanding our approach via an intuitive example. Given
a set of input FFA images, our CGT first restores a sub-
graph which is further incorporated with visual features to
generate a report.

As shown in Figure 4, one restored sub-graph consists
of four triples, and each triple describes a relation be-
tween the subjective and objective entity, e.g., [fluores-
cence,seen,macular] represents that based on the prior clin-
ical knowledge, ’fluorescence’ can be seen in the ’macu-
lar. The number of triples is depended on the length of
the input FFA images. Among the restored triples, [fluores-
cence,seen,macular] is the false positive triple which leads
to the incorrect sentence during the imaging of the left eye,
small patches of fluorescence were seen in the macular. This
phenomenon shows that our CGT is capable of extending
triples to a relevant sentence. Notably, due to the serve tex-
tual bias among the training corpus, the sub-graph restora-
tion also suffers since the clinical graph is constructed from
the training corpus. [fluorescence,seen,macular] is one of
the bias triples and exists in 92% training samples. Ac-
curately restored the triple [laser,spot,staining] verifies the
effectiveness of our CGT to detect abnormalities among
the input images and translate them into sentences. It also
demonstrates that our CGT is highly capable in sub-graph
restoration owing to the triple restoration loss. The last pre-
dicted sentence is not relevant to any triple in the restored

sub-graph. However, this information can be provided by
the compressed visual token.

5. Conclusion and Discussion
In this paper, we present an effective cross-modal clini-

cal graph transformer for ophthalmic report generation. To
obtain prior medical knowledge, we propose an information
extraction scheme to construct a clinical graph from oph-
thalmic reports. The prior knowledge inside this graph is
further restored to a sub-graph which is injected into the vi-
sual features for report generation. The experiments and
analyses on the public FFA-IR dataset support our argu-
ments and verify the effectiveness of our approach. Along
with achieving state-of-the-art performances, the restored
sub-graph also improves the explainability of our approach.
Negative societal impact As with other automatic diagnos-
tic methods, our algorithm should be utilized carefully in
clinical practice since medical decisions may lead to sig-
nificant consequences, including death. Therefore, while
our AI diagnostic method can provide a strong rationale for
judgment along with satisfactory performances, it should
only be used as an auxiliary resource.
Limitations Our clinical graph is constructed in an auto-
matic manner from a training corpus; therefore, we cannot
guarantee the complete accuracy of our graph. We are invit-
ing more experienced ophthalmologists to verify this graph.
In addition, our method is not sufficiently general to support
other report generation tasks. For each task, we will need
to update the information extraction methods and construct
a new clinical graph.
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