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Abstract

The ability to navigate like a human towards a language-
guided target from anywhere in a 3D embodied environment
is one of the ‘holy grail’ goals of intelligent robots. Most
visual navigation benchmarks, however, focus on navigat-
ing toward a target from a fixed starting point, guided by
an elaborate set of instructions that depicts step-by-step.
This approach deviates from real-world problems in which
human-only describes what the object and its surrounding
look like and asks the robot to start navigation from any-
where. Accordingly, in this paper, we introduce a Scenario
Oriented Object Navigation (SOON) task. In this task, an
agent is required to navigate from an arbitrary position in
a 3D embodied environment to localize a target following
a scene description. To give a promising direction to solve
this task, we propose a novel graph-based exploration (GBE)
method, which models the navigation state as a graph and in-
troduces a novel graph-based exploration approach to learn
knowledge from the graph and stabilize training by learning
sub-optimal trajectories. We also propose a new large-scale
benchmark named From Anywhere to Object (FAO) dataset.
To avoid target ambiguity, the descriptions in FAO provide
rich semantic scene information includes: object attribute,
object relationship, region description, and nearby region
description. Our experiments reveal that the proposed GBE
outperforms various state-of-the-arts on both FAO and R2R
datasets. And the ablation studies on FAO validates the
quality of the dataset.

1. Introduction
Recent research efforts [49, 19, 17, 47, 33, 45, 32] have

achieved great success in embodied navigation tasks. The
agent is able to reach the target by following a variety of
instructions, such as a word (e.g. object name or room
name) [49, 40], a question-answer pair [11, 18], a natural
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language sentence [3] or a dialogue consisting of multiple
sentences [45, 55].

However, these navigation approaches are still far from
real-world navigation activities. Current vision language
based navigation tasks such as Vision-language Navigation
(VLN) [3], Navigation from Dialog History (NDH) [45]
focus on navigating to a target by a fixed trajectory, guided
by an elaborate set of instructions that outlines every step.
These approaches fail to consider the case in which the
complex instruction provided only target description while
the starting point is not fixed. In real-world applications,
people often do not provide detailed step-by-step instructions
and expect the robot to be capable of self-exploration and
autonomous decision-making. We claim that the ability to
navigate towards a language-guided target from anywhere in
a 3D embodied environment like human would be of great
importance to an intelligent robot.

To address these problems, we propose a new task, named
Vision Situated Object Navigation (SOON), where an agent
is instructed to find a thoroughly described target object
inside a house. The navigation instructions in SOON are
target-oriented rather than step-by-step babysitter as in pre-
vious benchmarks. There are two major features that makes
our task unique: target orienting and starting independence.
A brief example of a navigation process in SOON is illus-
trated in Fig. 1. Firstly, different from conventional object
navigation tasks defined in [49, 40], instructions in SOON
play a guidance role in addition to distinguish a target ob-
ject class. An instruction contains thorough descriptions to
guide the agent to find a unique object from anywhere in the
house. After receiving an instruction in SOON, the agent
first searches a larger-scale area according to the region de-
scriptions in the instruction, and then gradually narrows the
search space to the target area. Compared with step-by-step
navigation settings [3] or object-goal navigation settings [49],
this kind of coarse-to-fine navigation process is more closely
resembles a real-world situation. Moreover, the SOON task
is starting-independent. Since the language instructions con-
tain geographic region descriptions rather than trajectory
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Figure 1: An example of the navigation process in SOON. An agent receives a complex natural language instruction consisting
of multiple kinds of descriptions (left-hand side). During the agent navigates among different rooms, it searches a larger-scale
area first, then gradually narrows down the search scope according to the visual scene and the instructions.

specific descriptions, they do not limit how the agent finds
the target. By contrast, in step-by-step navigation tasks such
as Vision Language Navigation [3] or Cooperative Vision-
and-Dialog Navigation [45], any deviation from the directed
path may be considered as an error [25]. We present an
overall comparison between the SOON task and existing
embodied navigation tasks in Tab. 1.

In this work, We propose a novel Graph-based Semantic
Exploration (GBE) method to suggest a promising direction
in approaching SOON. The proposed GBE has two advan-
tages compared with previous navigation works [3, 17, 47].
Firstly, GBE models the navigation process as a graph, which
enables the navigation agent to obtain a comprehensive and
structured understanding of observed information. It adopts
graph action space to significantly merge the multiple actions
in conventional sequence-to-sequence models [3, 17, 47]
into one-step decision. Merging actions reduces the num-
ber of predictions in a navigation process, which makes the
model training more stable. Secondly, different from other
graph-based navigation models [14, 9] that use either imi-
tation learning or reinforcement to learn navigation policy,
the proposed GBE combines the two learning approaches
and proposes a novel exploration approach to stabilize train-
ing by learning from sub-optimal trajectories. In imitation
learning, the agent learns to navigate step by step under the
supervision of ground truth label. It causes severe overfit-
ting problem since labeled trajectories occupy only a small
proportion of the large trajectory space. In reinforcement
learning, the navigation agent explores large trajectory space,
and learn to maximize the discounted reward. Reinforce-
ment learning leverages sub-optimal trajectories to improve
the generalizability. However, the reinforcement learning is
not an end-to-end optimization method, which is difficult for
the agent to converge and learn a robust policy. We propose

to learn the optimal actions in trajectories sampled from im-
perfect GBE policy to stabilize training while exploration.
Different from other RL exploration methods, the proposed
exploration method is based on the semantic graph, which
is dynamically built during the navigation. Thus it helps the
agent to learn a robust policy while navigating based on a
graph.

To investigate the SOON task, we propose a large-scale
From Anywhere to Object (FAO) benchmark. This bench-
mark is built on the Matterport3D simulator, which com-
prises 90 different housing environments with real image
panoramas. FAO provides 4K sets of annotated instructions
with 40K trajectories. As Fig. 1 (left) shows, one set of the
instruction contains three sentences, including four levels
of description: i) the color and shape of the object; ii) the
surrounding objects along with the relationships between
these objects and the target object; iii) the area in which the
target object is located and the neighbour areas. Then, the
average word number of the instructions is 38 (R2R is 26),
and the average hop of the labeled trajectories is 9.6 (R2R is
6.0). Thus our dataset is more challenging than other tasks.

We present experimental analyses on both R2R and FAO
datasets to validate the performance of the proposed GBE
and the quality of FAO dataset. The proposed GBE signifi-
cantly outperforms previous previous VLN methods without
pretraining or auxiliary tasks on R2R and SOON tasks. We
further provide human performance on the test set of FAO
to quantify the human-machine gap. Moreover, by ablating
vision and language modals with different granularity, we
validate that our FAO dataset contains rich information that
enables the agent to successfully locate the target.



Dataset Instruction Context Visual Context Starting Target
Human Content Unamb. Real-world Temporal Independent Oriented

House3D [49] 7 Room Name 3 7 Dynamic 3 7
MINOS [40] 7 Ojbect Name 3 3 Dynamic 3 7
EQA [11], IQA [18] 7 QA 3 7 Dynamic 3 7
MARCO [31], DRIF [5] 3 Instruction 3 7 Dynamic 7 3
R2R [3] 3 Instruction 3 3 Dynamic 7 3
TouchDown [10] 3 Instruction 3 3 Dynamic 7 3
VLNA [37], HANNA [36] 7 Dialog 7 3 Dynamic 7 3
TtW [13] 3 Dialog 3 3 Dynamic 7 3
CVDN [45] 3 Dialog 7 3 Dynamic 7 3
REVERIE [39] 3 Instruction 3 3 Dynamic 7 3
FAO (Ours) 3 Instruction 3 3 Dynamic 3 3

Table 1: Compared with existing datasets involving embodied vision and language tasks.

2. Related Work
Vision Language Navigation Navigation with vision-
language information has attracted widespread attention,
since it is both widely applicable and challenging. Ander-
son et al. [3] propose Room-to-Room (R2R) dataset, which
is the first Vision-Language Navigation (VLN) benchmark
combining real imagery [7] and natural language navigation
instructions. In addition, the TOUCHDOWN dataset [10]
with natural language instructions is proposed for street nav-
igation. To address the VLN task, Fried et al. propose
a speaker-follower framework [17] for data augmentation
and reasoning in supervised learning, along with a con-
cept named "panoramic action space" proposed to facilitate
optimization. Wang et al. [47] demonstrate the benefit to
combine imitation learning [6, 22] and reinforcement learn-
ing [34, 42]. Other methods [48, 29, 30, 44, 26, 24] have
been proposed to solve the VLN tasks from various angles.
Inspired by the success of VLN, many datasets based on nat-
ural language instructions or dialogues have been proposed.
VLNA [37] and HANNA [36] are environments in which
an agent receives assistance when it gets lost. TtW [13] and
CVDN [45] provide dialogues created by communication
between two people to reach the target position. Unlike the
above methods, REVERIE [39] introduces a remote object
localization task; in this task, an agent is required to find
an object in another room that is unable to see at the begin-
ning. The proposed SOON task is a coarse-to-fine navigation
process, which navigates towards a target from anywhere fol-
lowing a complex scene description. An overall comparison
between the SOON task and existing embodied navigation
tasks is shown in Tab. 1.
Mapping and Planning Classical SLAM-based meth-
ods [46, 12, 19, 16, 21, 4] build a 3D map with LIDAR,
depth or structure, and then plan navigation routes based on
this map. Due to the development of photo-realistic envi-
ronments [3, 10, 50] and efficient simulators [15, 40, 41],
deep learning-based methods [35, 28, 53] have become
feasible ways of training a navigation agent. Since deep

learning methods have revealed their ability in feature en-
gineering, end-to-end agents are becoming popular. Later
works [16, 51, 33] adopt the idea of SLAM and introduce a
memory mechanism, a method combining classical mapping
methods and deep learning methods for generalization and
long-trajectory navigation purposes. Recent works [9, 14, 8]
model the navigation semantics in graphs and achieve great
success in embodied navigation tasks. Different from pre-
vious work [14] that only trains the agent using labeled
trajectories by imitation learning, our works introduce rein-
forcement learning in policy learning and propose a novel
exploration method to learn a robust policy.

3. Scenario Oriented Object Navigation
Task Definition of SOON We propose a new Scenario Ori-
ented Object Navigation (SOON) task, in which an agent
navigates from an arbitrary position in a 3D embodied envi-
ronment to localize a target object following an instruction.
The task includes two sub-tasks: navigation and localization.
We consider a navigation to be a success if the agent navi-
gates to a position close to the target (<3m); and we consider
the localization to be a success if the agent correctly locates
the target object in the panoramic view based on the suc-
cess of navigation. To ensure that the target object can be
found regardless of the agent’s starting point, the instruction
consists of several parts: i) object attribute, ii) object relation-
ship, iii) area description, and vi) neighbor area descriptions.
An example to demonstrate different parts of description is
shown in Fig. 2. In step t in navigation, the agent observes a
panoramic view vt, containing RGB and depth information.
Meanwhile, the agent receives neighbour node observations
Ut = {u1t , ..., ukt }, which are the observations of k reachable
positions from the current position. All reachable positions
in a house scan are discretized into a navigation graph, and
the agent navigates between nodes in the graph. For each
step, the agent takes an action a to move from the current
position to a neighbor node or stop. In addition to RGB-D
sensor, the simulator provides a GPS sensor to inform the



object name stools

object relationship They are set under blue lights, behind a yellow sofa and in front of a table
with a white desktop.

target area The stools are in the barroom.

neighbor areas The stools are set by the stairs and near a living room.

full instruction In the barroom, there are two black stools set by the stairs. They are set in in 
front of a brown table with white desktop by the stairs and near a living room.

object attribute The two black stools, a bar table with a white desktop and brown body.

Annotation ContentStep

Figure 2: An example of annotating instructions in 6 steps.
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Figure 3: Converting a 2D bound-
ing box into Polar coordinate.

agent of its x, y coordinates. Also the simulator provides the
indexes of the current node and candidate nodes.
Polar Representation REVERIE [39] annotates 2D bound-
ing boxes in 2D views to represent the location of objects.
The 2D views are separated from the panoramic views of the
embodied simulator. This way of labeling has two disadvan-
tages: 1) some object separated by 2D views is not labeled;
2) 2D image distortion introduces labeling noise. We adopt
the idea of Point Detection [38, 54] and represent the location
by polar coordinates, as shown in Fig. 3. First, we annotate
the object bounding box with four vertices {p1, p2, p3, p4}.
Then, we calculate the center point by pc. After that, we
convert the 2D coordinates into an angle difference between
the original camera ray α and the adjusted camera ray α′.

4. Graph-based Semantic Exploration

We present the Graph-based Semantic Exploration (GBE)
method in this section. The pipeline of the GBE is shown in
Fig. 4. Our vision encoder g and language encoder h are built
on a common practice of vision language navigation [47, 44,
52]. Subsequently, we introduce the graph planner in GBE,
which models the structured semantics of visited places.
Finally, we introduce our exploration method based on the
graph planner.
Graph-based Navigation Memorizing viewed scenes and
explicitly model the navigation environment are helpful for
long-term navigation. Thus, we introduce a graph planner
to memorize the observed features and model the explored
areas as a feature graph. The graph planner maintains a node
feature set V , an edge set E and a node embedding setM.
The node feature set V is used to store node features and
candidate features generated from visual encoder g. The
edge set E dynamically updated to represent the explored
navigation graph. The embedding set M stores the inter-
mediate node embeddings, which are updated by GCN [27].
The node features inM, noted as fMni

, are initialized by the
feature of the same position in V . At step t, the agent navi-
gates to a position whose index is d0, and receives a visual
observation vt and the observations of neighbor nodes are

Ut = {u1t , ..., ukt }, where k is the number of the neighbors
and Nt = {n1, ..., nk} are node indexes of the neighbors.
The visual observation and neighbor observations are em-
bedded by the visual encoder g:

fvn0
= g(vt)

f cni
= g(uit),

(1)

where n0 stands for the current node, and ni(1 ≤ i ≤ n) are
the node it connects with. The graph planners add the fvt
and fu,it into V:

V ← V ∪ {fvn0
, fun1

, ..., funk
}. (2)

For an arbitrary node ni in the navigation graph, its node
feature is represented by V following two rules: 1) if a node
ni is visited, its feature fni

is represented by fvni
; 2) if a node

ni is not visited but only observed, its feature is represented
by funi

; 3) since a navigable position is able to be observed
from multiple different views, the unvisited node feature is
represented by the average value of all observed features.
The graph planner also updates the edge set E by:

E ← E ∪ {(n0, n1), (n0, n2), ..., (n0, nk)}. (3)

An edge is represented by a tuple consists of two node in-
dexes, indicating that two nodes are connected. Then,M is
updated by GCN based on V and E :

M← GCN(M, E). (4)

To obtain comprehensive understanding of the current po-
sition and nearby scene, we define the output of the graph
planner as:

fgt =
1

k + 1

k∑
i=0

fMni
, (5)

fgt and language feature f lt perform cross-modal match-
ing [47] and output f̃t. GBE uses the f̃t for two tasks: navi-
gation action prediction and target object localization. The
candidates to navigate are all observed but not visited nodes



Attn

Vision
Encoder

I want to find a brown, 
thick and rectangular book 
which is put on a grey 
candlestick ...

Regression

!"#$

FCnav

Language
Encoder camera

Room Structure

fg
t

<latexit sha1_base64="PAr4y5dY/ZdlN+ktdpan4g4HfN0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjxWsB/QxrLZbtqlm03YnQgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqAScJ9yM6VCIUjKKVmuHjsI/9csWtunOQVeLlpAI5Gv3yV28QszTiCpmkxnQ9N0E/oxoFk3xa6qWGJ5SN6ZB3LVU04sbP5sdOyZlVBiSMtS2FZK7+nshoZMwkCmxnRHFklr2Z+J/XTTG88jOhkhS5YotFYSoJxmT2ORkIzRnKiSWUaWFvJWxENWVo8ynZELzll1dJ66Lq1arX97VK/SaPowgncArn4MEl1OEOGtAEBgKe4RXeHOW8OO/Ox6K14OQzx/AHzucP0NmOtg==</latexit>

f l
t

<latexit sha1_base64="HWLW9TWxH3wauLXWqMp2Le3/CQM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjxWMG2hjWWz3bRLN5uwOxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777RTW1jc2t4rbpZ3dvf2D8uFR0ySZZtxniUx0O6SGS6G4jwIlb6ea0ziUvBWObmd+64lrIxL1gOOUBzEdKBEJRtFKfvQoe9grV9yqOwdZJV5OKpCj0St/dfsJy2KukElqTMdzUwwmVKNgkk9L3czwlLIRHfCOpYrG3AST+bFTcmaVPokSbUshmau/JyY0NmYch7Yzpjg0y95M/M/rZBhdBROh0gy5YotFUSYJJmT2OekLzRnKsSWUaWFvJWxINWVo8ynZELzll1dJ86Lq1arX97VK/SaPowgncArn4MEl1OEOGuADAwHP8ApvjnJenHfnY9FacPKZY/gD5/MH2HeOuw==</latexit>

FCloc

Choose one of the
candidates to go.

Generate Labels

candidate node

visited node

target nodecurrent node

Graph Planner

Visual Views

Instruction

GCN

unvisited node

!%&'

teacher action

Figure 4: An overview of Graph-Based Semantic Exploration (GBE) model. Visual views are encoded by vision encoder and
instructions are encoded by language encoder. The graph planner models the room semantics based on vision embeddings
and the room structure information. GBE employs a GCN to embed graph nodes and output a graph embedding. Then,
GBE outputs a cross-modal feature based on the graph embedding feature and language features. After that, GBE uses the
cross-modal feature to predict the navigation action and regress the target location.

whose indexes are C = {c1, ..., c|C|}, where |C| is the num-
ber of candidates. The candidate feature are extracted from
V , denoted as {fc1 , ..., fc|C|}. The agent generates a proba-
bility distribution pt over candidates for action prediction,
and outputs regression results l̂hi and l̂ei standing for heading
and elevation values for localization:

zi =Wnav[f̃t, fci ],

pt(aci) = exp(zi)/
∑
j

exp(zj),

[l̂hi , l̂
e
i ] =Wlocf̃t.

(6)

0 ≤ i ≤ |C|. zi are logits generated by a fully connected
layer whose parameter isWnav . ac0 indicates the stop action.
Thus the action space |A| = |C|+ 1 is varied depending on
the dynamically built graph.
Graph-based Exploration Seq2seq navigation models such
as speaker-follower [17] only perceives the current observa-
tion and an encoding of the historical information. And ex-
isting exploration methods focus on data augmentation [44],
heuristic-aided approach [30] and auxiliary task [52]. How-
ever, with the dynamically built semantic graph, the naviga-
tion agent is able to memorize all the nodes that it observes
but has not visited. Thus we propose to use the semantic
graph to facilitate exploration.

As shown in Fig. 4 (yellow box), the graph planner builds
the navigation semantic graph during exploration. In imi-
tation learning, the navigation agent uses the ground truth
action a∗t to sample the trajectory. However, in each step t, in
graph-based exploration, the navigation action at is sampled
from the predicted probability distribution of the candidates
in Eq. 6. The graph planner calculate the Dijkstra distance
from each candidate to the target. The teacher action ât is to

reach the candidate which is the closest to the target. Each
trajectory in Room-to-room (R2R) dataset has only one tar-
get position. However, in the SOON task, since the target
object could be able to be observed from multiple positions,
trajectories could have multiple target positions. The teacher
action â is calculated by:

ât = argmin
a
ni
t

[min (D(ci, nT1
), ...,D(ci, nTm

))] , (7)

where nT1
, ..., nTm

are indexes of m targets, and the action
from current position to node ni is defined by ani

t . D(ni, nj)
stands for the function that calculates the Dijkstra distance
between node ni and nj . Note that the target positions are
visible in training to calculate the teacher action but not
visible in testing. If the current position is one of target
nodes, the teacher actions ât is a stop action. Sampling and
executing action a from imperfect navigation policy enables
the agent to explore in the room. Using the optimal action
ât helps to learn a robust policy.
Training Objectives We here introduce two objectives in
training: i) the navigation objective Lnav; ii) the object
localization objective Lloc. The GBE model is jointly op-
timized by these two objectives. In imitation learning, our
navigation agent learns from the ground truth action a∗. In
reinforcement learning, the agent learns to navigate by maxi-
mizing the discounted reward when taking action at [43]. In
graph-based exploration, we calculate the candidate which
is closest to the target by the graph planner and set the action
to move to the candidate as ât. The Lnav is the combination
of the above three learning approaches:

Lnav = −λ1
∑
τ1

∑
t

a∗t log(pt)

− λ2
∑
τ2

∑
t

atlog(pt)At − λ3
∑
τ3

∑
t

âtlog(pt).
(8)
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Figure 5: Statistical analysis across FAO

At is the advantage defined in A2C [34]. The reward of
reinforcement learning is calculated by the Dijkstra distance
between the current position and the target. The λ1, λ2,
λ3 are loss weights for imitation learning, reinforcement
learning and graph-based exploration respectively. Our agent
learns a localization branch that is supervised by the center
position of the target. Since we map the 2D bounding box
position into polar representation, the label consists of two
linear values, namely heading lh and elevation le. We use
Mean Square Error (MSE) to optimize predictions:

Lloc =
1

N

N∑
i=1

[
(l̂hi − l

h
i )

2 + (l̂ei − l
e
i )

2
]
. (9)

5. Experiments

5.1. From Anywhere to Object (FAO) Dataset

We provide 3,848 sets of natural language instructions,
describing the absolute location in a 3D environment. We
further collect 6,326 bounding boxes for 3,923 objects across
90 Matterport scenes. Despite the fact that our task does
not place limitations on the agent’s starting position, we
provide over 30K long distance trajectories in our dataset
to validate the effectiveness of our task. Each instruction
contains attributes, relationships and region descriptions to
filter out the unique target object when there are multiple
objects. Please refer to the supplementary materials for more
details of our FAO dataset and experimental analysis.
Data Split The training split contains 3,085 sets of instruc-
tions with 28,015 trajectories over 38 houses. We propose
a new split named validation on seen instruction, which
is a validation set containing the same instructions in the
same house with different starting positions. The validation
seen instruction set contains 245 instructions with 1,225 tra-
jectories. The validation set for seen houses with different
instructions contains 195 instructions with 1,950 trajecto-
ries. The validation set for the unseen houses contains 205
instructions with 2,040 trajectories.
Data Collection We first label bounding boxes for objects
in panoramic views. Then we convert the bounding box
labels into polar representations as described in Sec. 3. Note

that the object can be reached from multiple positions. We
annotate all these positions to reduce the dataset bias.

To collect diverse instructions with their hierarchical de-
scriptions, we divide the language annotation task into five
subtasks as shown in Fig. 2: 1) Describe the attributes, such
as the color, size or shape, of the target; 2) Find at least two
objects related to the target and describe their relationship;
3) Conduct explorations in the simulator to describe the re-
gion in which the target is located; 4) Explore and describe
the nearby regions; 5) Rewrite all descriptions within three
sentences. The first four steps ensure language complexity
and diversity. And the rewriting step makes the language
instruction coherent and natural.

Finally, we generate long navigation trajectories using the
navigation graph of each scene. To make the task sufficiently
challenging, we first set a threshold of 18 meters. For each
instruction and object pair, we fix the target viewpoint and
sample the starting viewpoint. We determine a trajectory
as valid if the Dijkstra distance between the two viewpoints
exceeds the threshold. In some houses, long trajectories
are often difficult to find or may even not exist. Thus, we
discount the threshold by a factor of 0.8 after every five
sample failures.

Data Analysis Fig. 5 (left) illustrates the distributions of
word numbers in the instructions. The FAO dataset contains
3,848 instructions with a vocabulary of 1,649 words. The
average number of the words in an instruction set is 38.6,
while which in REVERIE is 26.3 and in R2R is 18.3. Most
of the instructions range from 20 words to 60 words, which
ensures the power of representation. Moreover, the variance
in instruction length makes the description more diverse.
The trajectory length ranges from 15 meters to more than
60 meters. Compared with R2R and REVERIE that most of
the trajectories are within 8 hops, as shown in Fig. 5 (mid-
dle), FAO provides much more long-term trajectories, which
makes the dataset more challenging. Fig. 5 (right) illustrates
the proportion of word numbers in the four instruction anno-
tating steps. The more words are in the annotation, the richer
information it contains. Therefore, we can infer that the
object relationship and nearby regions contain the richest in-
formation. An agent should consequently pay more attention



Splits Unseen House (Val) Unseen House (Test)
Metrics NE ↓ OSR ↑ SR ↑ SPL ↑ NE ↓ OSR ↑ SR ↑ SPL ↑
Seq2Seq [3] 7.81 28.4 21.8 - 7.85 26.6 20.4 -
Ghost [2] 7.20 44 35 31 7.83 42 33 30
Speaker-Follower [17] 6.62 43.1 34.5 - 6.62 44.5 35.1 -
RCM [47] 5.88 51.9 42.5 - 6.12 49.5 43.0 38
Monitor* [29] 5.52 56 45 32 5.67 59 48 35
Regretful* [30] 5.32 59 50 41 5.69 56 48 40
EGP [14] 5.34 65 52 41 - - - -
EGP* [14] 4.83 64 56 44 5.34 61 53 42
GBE (Ours) 5.20 67.0 53.9 43.4 5.18 64.1 53.0 43.4

Table 2: The results of the GMSE and previous state-of-the-art methods on R2R (*: model uses additional synthetic data).

to these two parts in order to achieve good performance.

5.2. Experimental Results

Experiment Setup We evaluate the GBE model on R2R and
FAO datasets. We split our dataset into five components: 1)
training; 2) validation on seen instructions (on seen houses as
well); 3) validation on seen houses but unseen instructions;
4) validation on unseen houses; and 5) testing. Compared
with standard VLN benchmark [3], we add a new validation
set in FAO, the validation on seen instructions, due to the
task starting-independent.

We evaluate the performance from two aspects: naviga-
tion performance and localization performance. The navi-
gation performance is evaluated via commonly used VLN
metrics, including Navigation Error (NE), Success Rate (SR),
Oracle Success Rate (OSR) and the Success Rate weighted
by Path Length (SPL) [1]. The localization performance
is evaluated by the success rate indicating whether the pre-
dicted direction is located in the bounding box. We combine
the SPL and localization success to propose a success rate
of finding weighted by path length (SFPL):

SFPL =
1

N

N∑
i=1

Snavi Sloci
lnavi

max(lnavi , lgti )
, (10)

where Snavi and Sloci are indicators of whether the agent has
successfully navigated to or localized the target, respectively.
lnavi is the length of the navigation trajectory, while lgti is
the shortest distance between the ground truth target and the
starting position.
Implementation Details We compare the proposed model
with several baselines: 1) a random policy; 2) Speaker-
Follower [17], an imitation learning method; 3) RCM [47],
an imitation learning and reinforcement learning; 4)
AuxRN [52], a model with auxiliary tasks; 5) the Hierar-
chical Memory Network. All five models employ the same
vision language navigation backbone introduced in Sec. 4.
The visual encoder g is implemented by a Resnet-101 [20]
and the language encoder h is a combination of a word em-

bedding layer and an LSTM [23] layer. We train all models
on the training split for 10K interactions to ensure that all
models are sufficiently trained. The optimizer we use is
RMSProp and the learning rate is 10−4.
Results on R2R In Tab. 2, we compare the GBE model
with state-of-the-art models without pretraining and auxil-
iary tasks. On the unseen house validation set, the GBE
outperforms all models without using additional data. It
outperforms EGP, other graph-based navigation method by
2.4% in SPL. On the test set, the GBE outperforms pervious
models on all the evaluation metrics. It outperforms RCM, a
seq2seq model with imitation learning with reinforcement
learning by 5.4% in SPL.
Results on FAO The experimental results are presented in
Tab. 3. The performances of the baseline models reveal
some unique features of the FAO dataset. Firstly, the human
performance largely outperforms all models. The existence
of this human-machine gap suggests that current methods
are not able to solve this new task. The random policy
method performs poorly on all metrics, which reveals that
our dataset is not biased. Moreover, Reinforced Cross-Modal
Matching (RCM), a method combines imitation learning
and reinforcement learning outperforms the pure imitation
learning method (Speaker-follower) on the unseen house
set. It indicates that reinforcement learning helps avoid
overfitting in our dataset. Our experiment of the AuxRN
shows that the auxiliary tasks work on R2R are not benefitial
on FAO, which indicate the SOON is unique. We test the
performance of the GBE and the GBE without graph-based
exploration. We observe that with graph-exploration, the
model obtain better generalization ability. The final model
is 0.7% higher in oracle success rate, 0.5% higher in success
rate, 1.5% higher in SPL and 0.6% higher in SFPL than
which without graph-based exploration on the test set. We
discover that models perform well on the seen instruction
set but perform poorly on other two sets. Since the domain
of the seen instruction set is close to the training set, it
indicates that models fit the training data well but lack of
generalizability.



Splits Val Seen Instruction Val Seen House Unseen House (Test)
Metrics OSR SR SPL SFPL OSR SR SPL SFPL OSR SR SPL SFPL
Human - - - - - - - - 91.4 90.4 59.2 51.1
Random 0.1 0.0 1.5 1.4 0.4 0.1 0.0 0.9 2.7 2.1 0.4 0.0
Speaker-Follower [17] 97.8 97.9 97.7 24.5 69.4 61.2 60.4 9.1 9.8 7.0 6.1 0.6
RCM [47] 89.1 84.0 82.6 10.9 72.7 62.4 60.9 7.8 12.4 7.4 6.2 0.7
AuxRN [52] 98.7 98.4 97.4 13.7 78.5 68.8 67.3 8.3 11.0 8.1 6.7 0.5
GBE w/o GE 91.8 89.5 88.3 24.2 73 62.5 60.8 6.7 18.8 11.4 8.7 0.8
GBE (Ours) 98.6 98.4 97.9 44.2 64.1 76.3 62.5 7.3 19.5 11.9 10.2 1.4

Table 3: The results for baselines and our model on two validation set and test set.

Models vision language SR SPL SFPL
GBE 7 7 0.6 0.4 0.0
GBE 3 7 9.8 8.1 0.5
GBE 7 3 1.8 1.5 0.2
GBE 3 3 11.9 10.2 1.4

Table 4: Ablation of unimodal inputs.

Models SR SPL SFPL
GBE+ 1 7.3 6.2 0.5

GBE+ 1 + 2 6.2 4.9 0.7
GBE+ 1 + 2 + 3 6.6 5.5 0.8

GBE+ 4 11.9 10.2 1.4

Table 5: Ablation of granularity levels.

Ablation study of FAO We ablate the FAO dataset from
two aspects: 1) the effect of vision and language modalities
and 2) the effect of different granularity levels. The ablation
result of input modal is shown in Tab. 4. We observe that
the model without vision and language input performs the
worst. Thus it is impossible to finish SOON task without
vision-language modalities. And the model with vision only
performs better than the model with language only. We infer
that the vision is more import than language in SOON task.
Finally, we find that the model with vision and language
performs the best, indicating that the two modalities are
related and both modalities are important. Some objects like
‘chair’ exist in all houses while other objects like ‘flower’ do
not commonly exist. The model learns prior knowledge to
find common object in navigation without language.

The ablation result of granularity levels is shown in Tab. 5.
We train the GBE with different annotation granularity levels:
1 object names, 2 object attributes and relationships, 3
region information, 4 rewritten instructions. Note that the
model with object names (GBE+ 1 ) is equivalent to the
ObjectGoal navigation. We find that the model trained in
ObjectGoal setting performs worse than the models trained
with more information. It has two reasons: 1) there are more
than one objects belongs to the same class, and navigating
with object name cause ambiguity; 2) navigating without
scene and region makes the agent harder to find the final
location. By comparing the first three experiments, we infer
that the object name ( 1 ), object attributes and relationships
( 2 ) and region descriptions ( 3 ) all contribute to the SOON
navigation. At last, we find that the model with rewritten
instructions performs the best (0.6% higher in SFPL than
GBE+ 1 + 2 + 3 ). We infer that a well developed natural

language instruction facilitates the agent to comprehend.

6. Conclusion

In this paper, we have proposed a task named Scenario
Oriented Object Navigation (SOON), in which an agent is in-
structed to find an object in a house from an arbitrary starting
position. To accompany this, we have constructed a dataset
named From Anywhere to Object (FAO) with 3K descriptive
natural language instructions. To suggest a promising direc-
tion for approaching this task, we propose GBE, a model
that explicitly models the explored areas as a feature graph,
and introduces graph-based exploration approach to obtain a
robust policy. Our model outperforms all previous state-of-
the-art models on R2R and FAO datasets. We hope that the
SOON task could help the community approach real-world
navigation problems.
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