
Reinforcement Cutting-Agent Learning for Video Object Segmentation

Junwei Han1, Le Yang1, Dingwen Zhang1,2∗, Xiaojun Chang3, Xiaodan Liang3

1Northwestern Polytechincal University, 2Xidian University, 3Carnegie Mellon University

junweihan2010@gmail.com, nwpuyangle@gmail.com, zdw2006yyy@mail.nwpu.edu.cn

cxj273@gmail.com, xdliang328@gmail.com

Abstract

Video object segmentation is a fundamental yet chal-

lenging task in computer vision community. In this paper,

we formulate this problem as a Markov Decision Process,

where agents are learned to segment object regions under a

deep reinforcement learning framework. Essentially, learn-

ing agents for segmentation is nontrivial as segmentation

is a nearly continuous decision-making process, where the

number of the involved agents (pixels or superpixels) and

action steps from the seed (super)pixels to the whole ob-

ject mask might be incredibly huge. To overcome this d-

ifficulty, this paper simplifies the learning of segmentation

agents to the learning of a cutting-agent, which only has

a limited number of action units and can converge in just

a few action steps. The basic assumption is that object

segmentation mainly relies on the interaction between ob-

ject regions and their context. Thus, with an optimal ob-

ject (box) region and context (box) region, we can obtain

the desirable segmentation mask through further inference.

Based on this assumption, we establish a novel reinforce-

ment cutting-agent learning framework, where the cutting-

agent consists of a cutting-policy network and a cutting-

execution network. The former learns policies for deciding

optimal object-context box pair, while the latter executes

the cutting function based on the inferred object-context box

pair. With the collaborative interaction between the two net-

works, our method can achieve the outperforming VOS per-

formance on two public benchmarks, which demonstrates

the rationality of our assumption as well as the effective-

ness of the proposed learning framework.

1. Introduction

The video object segmentation (VOS) task [36, 37, 18]

focuses on labeling each pixel as foreground or background

in the given frame. It is the foundation of many vision

tasks, such as scene understanding [8] and video surveil-

∗Corresponding author.

Figure 1. Segmentation masks. For an identical segmentation

model, different object boxes (shown in red) and context boxes

(shown in blue) can generate different segmentation masks. The

gt indicates the ground truth segmentation mask for this frame.

lance [7, 4]. There are three kinds of VOS methods in gen-

eral, including unsupervised VOS methods [29, 43], weakly

supervised VOS methods [5, 11, 48], and semi-supervised

VOS methods [1, 12, 16], respectively. This paper mainly

focuses on the semi-supervised VOS.

One common choice for addressing the semi-supervised

VOS problem is based on tracking or matching [1, 16, 43],

where the core idea is to find the image (super)pixels that

correspond to those in the previous (annotated) mask from

the preceding video frame. However, this strategy is hard to

obtain satisfactory performance in practice because in the

unconstrained real-world scenarios, the blurry motion and

heavy occlusion would destroy the matching results. Be-

sides, the cluttered background and textureless object fore-

ground would mislead the matching results. In this paper,

we model this problem as a conditional decision-making

process rather than the simple matching or tracking process,

where one or more agents are employed to decide which

(super)pixels are the corresponding foreground object con-
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ditional on the object box obtained from the previous frame.

According to [20], biological vision systems are believed

to have a sequential process with changing retinal fixa-

tions that gradually accumulate evidence of certainty when

searching or localizing objects. In this paper, we believe

it does the same for segmenting objects. Thus, it is high-

ly desirable, both biologically and computationally, to ex-

plore computational models that facilitate object segmenta-

tion in such manner. This finding enlightens us to explore

a new pipeline of VOS by sequentially exploring for the

desired object masks and considering their contextual de-

pendency during the exploration process. To reach a ro-

bust decision-making process, instead of making such deci-

sions heuristically, we propose to learn an optimal decision-

making policy under the deep reinforcement learning (DR-

L) framework. Reinforcement learning has obtained suc-

cesses in areas like robotics [17] and control [23], where

real agents and environments are involved naturally. In the

recent few years, with the rapid development of the deep

learning technique, deep reinforcement learning emerges

and shows promising results in many computer vision sys-

tems although the interpretation of their strategies that an

agent interacts with an environment is not always so in-

tuitive [19]. DRL has been studied for addressing some

computer vision problems in object localization [2, 15, 22],

tracking [9, 44], and pose estimation [19], while to our best

knowledge, we make the first attempt to apply DRL for the

video object segmentation problem.

Deep Reinforcement Learning (DRL) is good at mak-

ing discrete choices about which action to execute, as it

has been used in the existing control and computer vision

systems. However, in the investigated VOS problem, di-

rectly using DRL under the conventional (super)pixel label

assignment process to learn segmentation agents would re-

sult in a nearly continuous decision-making process. The

number of the involved agents (pixels or superpixels) and

action steps from the seed (super)pixels to the whole objec-

t mask might be incredibly huge, and thus would not ob-

tain good performance. To overcome these difficulties, this

paper simplifies the learning of segmentation agents to the

learning of a cutting-agent, which only has limited number

of action units and can converge in just a few action step-

s. Our intuition is that an identical segmentation model can

generate significantly distinct object masks given different

object and context boxes (see Figure 1). The segmentation

of the video foreground object can be thus considered as

the interaction between object regions and their contexts,

where the object regions provide appearance priors for the

object of interest, while the context regions provide the op-

timal contrast priors for discriminating the foreground ob-

ject from its surrounding background. Based on the above

observations, we assume that, with the optimal predicted

object foreground (bounding box) region and the (bounding

Figure 2. Framework of the proposed reinforcement cutting-agent

learning approach for the VOS problem. At each step, CPN ob-

serves the current states, determines actions to adjust object box

and context box. Then CEN generates the object mask of the

refined box. After multi-step box refinements, our method can

progressively improve the segmentation performance. The object-

context box pairs are shown in red and blue respectively. The dot-

ted line indicates the object box propagated from the segmentation

mask of the former step.

box) context region, the segmentation model is able to ob-

tain perfect segmentation masks of the desired foreground

objects. Based on this assumption, we establish a novel re-

inforcement cutting-agent learning framework, where the

cutting-agent consists of a cutting-policy network (CPN)

and a cutting-execution network (CEN). The former learns

policies for deciding optimal object-context box pair, while

the latter executes the cutting function based on the inferred

object-context box pair.

Equipped with the cutting-agent, we build a novel VOS

framework, as shown in Figure 2. Following the spirit of

Perazzi’s work[16] and Zhang’s work [48], we proceed our

approach on a per-frame basis by obtaining the object of

interest in each frame guided by the output of the previ-

ous frame. The CPN and CEN are pre-trained on auxil-

iary static images and fine-tuned by using the annotated first

frame of each video. The input of CPN is current frame fea-

ture, the current state, and the history actions. Then, CPN

learns two-fold policies for deciding the optimal action se-

quence to achieve the appropriate foreground object loca-

tion as well as its corresponding context for segmentation.

CEN takes the predicted object-context box pair as its in-

put and learns the segmentation-aware representations and

discriminative cutting functions to separate the desired ob-
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ject from its context. During inference, given the annotated

object mask of the first frame in each video sequence, CP-

N localizes the foreground box in the second frame, which

starts with the box location obtained in the first frame and

then gradually reaches the predicted optimal object-context

box pair on the second frame until the stop action is exe-

cuted. The corresponding segmentation mask is obtained

by performing CEN based on the predicted optimal object-

context box pair. By repeating the aforementioned process,

the proposed approach can finely segment the object of in-

terest from each frame of given video sequences.

To sum up, this paper has three main contributions:

• We make the earliest attempt to solve the (semi-

supervised) video object segmentation problem as a

conditional decision-making process and build the first

deep reinforcement learning based video object seg-

mentation framework.

• We reveal the insight of formulating the video object

segmentation problem as the inference based on the in-

teraction between optimal object region and their con-

text, resulting in the simple yet effective learning poli-

cies for deciding the optimal object-context box pair

for video object segmentation.

• We implement a novel DRL-based VOS framework

to learn a cutting-agent by collaborating the cutting-

policy network and cutting-execution network. Com-

prehensive experiments have demonstrated the ratio-

nality of our assumption as well as the effectiveness of

the proposed learning framework.

2. Related work

Video object segmentation: As an extensively studied

area, the existing VOS method can be summarized as unsu-

pervised methods [43], the weakly supervised methods [48]

and the semi-supervised methods [1, 12, 16]. Essentially,

as the weakly supervised or unsupervised methods cannot

access pixel-level annotated training exemplars, they typi-

cally estimate informative cues, such as boundaries, motion,

video saliency and object detection etc., then segment video

object according to the estimated cues. In [43], Xiao and

Lee first generate bounding box proposals for each frame,

then regard these boxes as weak supervision to iteratively

refine the segmentation masks.

As for semi-supervised VOS task, the learning method-

s can explore the annotated video frame and learn specif-

ic object pattern for the input video sequences. Especially,

when applying the deep convnet to segment video object,

researchers usually pre-train the convnet on auxiliary anno-

tated data and fine-tune the convnet on the annotated video

frames. Recently, Jampani et al. [12] propose a Video Prop-

agation Network, which is capable of propagating informa-

tion across video frames.

Different from the existing works, we formulate the VOS

problem as a Markov Decision Process and dispose it from

the view of DRL. This is an unknown and worth trying at-

tempt, which may generate an effective VOS method.

Deep reinforcement learning: The reinforcement learning

learns an agent to evaluate the impact of certain actions un-

der particular states, and it is effective to optimize the se-

quential decision problems [40]. In [26], Mnih et al. applied

a deep neural network as a function approximator to esti-

mate the action-value function for reinforcement learning,

resulting in the deep reinforcement learning (DRL) method.

Afterwards, a series of approaches have been proposed to

assist DRL, such as memory replay [26] and policy gradi-

ent [23] etc.

Recently, there has occurred some successful attempts to

apply the DRL methods in computer vision tasks [3, 44]. In

[3], Cao et al. apply the DRL method to face hallucination

task, and sequentially discover image patches, which should

be attached more attention and enhanced. For visual object

tracking, Yun et al. [44] cast this problem to a decision-

making process and apply the DRL method to sequentially

move the bounding box, achieving accurate tracking results.

Although the existing works have shown that the DRL

method is capable of appropriating global optimization for

sequential decision tasks. Directly using it in the investi-

gated VOS problem is still nontrivial. This mainly due to

that segmentation is a nearly continuous decision making

process, where the number of the involved agents and ac-

tion steps might be incredibly huge. To this end, this work

simplifies the learning of segmentation agents to the learn-

ing of a cutting-agent. The cutting-agent only has a limit-

ed number of action units and can converge in just a few

action steps, making it practical to learn the cutting-agent

in the DRL manner. Such simplification strategy makes us

become the first to be able to implement VOS under the

DRL framework and the proposed CPN-CEN framework is

different from any existing DRL frameworks designed for

object localization or tracking.

3. Reinforcement cutting-agent learning

We formulate the video object segmentation problem as

a Markov Decision Process (MDP) and employ the CEN

to sequentially segment the object of interest based on the

object-context box pair inferred by the CPN. Essentially,

the studied MDP is based on states s ∈ S , object search-

ing action ao ∈ Ao, context embedding action ac ∈ Ac,

state transition function s
′

= T (s, ao, ac) and the reward

function r(s, s
′

).
Given a video sequence V with the segmentation mask

m1 in the first frame, the proposed method progressively

processes each frame. The state s consists of the input frame
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Figure 3. Network architecture of our reinforcement cutting-agent learning method. The cutting-policy network consists of two branches,

determining the proper actions for object box and context box respectively. The cutting-execution network takes the architecture of FC-

DenseNet [14]. It consists of down sampling path and up sampling path. DB indicates Dense Block (densely connected convolutional

layers in a block), Down and Up are used to extract the feature representation and up sample the feature maps, respectively.

information and the action history. Specifically, considering

the tth video frame ft, when the cutting-agent disposes of

it for the kth time, the cutting-agent observes the state st,k
and determines the object searching action aot,k and context

embedding action act,k. These actions adjust the object box

bot,k and context box bct,k. Then the segmentation mask mk

and the corresponding reward rk can be obtained. When

the stop action is executed or the cutting agent reaches the

maximal search steps, our method obtains the object box

from the segmentation mask and propagates it to the next

frame.

3.1. Agent actions

For an input frame ft, we design a CPN to learn the ex-

pected cutting-agent, which determines action policies of an

object searching action aot,k and a context embedding action

act,k according to the observed state st,k. The architecture of

the CPN is shown in the left part of Figure 3. There are three

convolutional layers in the front of the CPN, followed by t-

wo branches deciding the object searching action aot,k and

the context embedding action act,k respectively. As shown in

Figure 4, the object searching action set Ao contains 9 kind-

s of actions, including 4 translation actions {Right, Down,

Left, Up}, 4 scale change actions {Horizontal shrink, Ver-

tical shrink, Horizontal zoom, Vertical zoom} and 1 Stop

action. The context embedding action set Ac consists of 3
actions, selecting the context box bct,k with three different

magnitudes: 0.2, 0.4, 0.6. The conventional DRL method-

s in computer vision task generally adopt a single pathway

network architecture [9, 33, 44]. In contrast, the proposed

CPN consists of two branches and can simultaneously de-

termines the object searching action aot,k and the context

embedding action act,k.

3.2. State and state transition

The state st,k contains the current frame information

µt,k ∈ R
288×7×7 and the object searching action history

νot,k, the context embedding action history νct,k. The CEN

Figure 4. Object searching action set Ao and context embedding

action set Ac.

forward propagates frame ft,k, and extracts the frame infor-

mation µt,k at the end of down sampling path.

The action history is a vector, which tracks the past k

actions. Each object searching action is represented as a 9-

dimensional one-hot vector (or zero vector at the beginning

of each frame ). The context embedding action is defined

similarly. We found k = 4 is a good choice, which results

in νot,k ∈ R
36 and νct,k ∈ R

12. As for the context branch in

the CPN (Figure 3), in addition to the feature vector from

the convolutional layers, the context embedding action his-

tory vector, this branch also considers the object searching

action aot,k under current state. In this way, the decision

made by the context branch can be more rational and stable.

The state transition consists of the action execution func-

tion Ψo(aot,k), Ψ
c(act,k) and the box channel transform func-

tion Φ(mt). For object searching action aot,k, Ψo(aot,k)
translates or scales the object box bot,k to a certain direction

by a factor of 0.2 relative to its current size. As for con-

text embedding action act,k, the agent decides four edges for

the context box separately. Take the top edge for example,

the method first measures the distance Du
t,k between the top

edge of the object box bot,k and the frame boundary. Then

the top edge of the context box is determined by:

∆u = βDu
t,k (1)

where ∆u is the distance of the top edges between the con-

text box bct,k and object box bot,k. β ∈ {0.2, 0.4, 0.6} is the

magnitude depending on the context embedding action act,k.

The other three edges can be determined similarly.

Having obtained the object box bot,k and the context box

bct,k after each inferring step, the CEN generates an object

9083



mask mt,k, which passes through a box channel transform

function Φ(mt,k). Precisely, as mt,k indicates the object

box bot,k+1
, we expand the raw image from RGB channels to

RGB + object box channels and obtain video frame ft,k+1.

The box channel indicates the object location. Pixels inside

the object box bot,k+1
are set to 255 and pixels outsides are

set to 0.

3.3. Reward

The reward function r(st,k, st,k+1) reflects the positive /

negative variation of the segmentation mask. As the target

object varies smoothly among neighboring frames, for each

video frame ft, the initial object box bot,1 is close to the real

desired object box bot,e. Consequently, in the cutting-agent,

CPN only needs to interacts with CEN several times before

reaching the optimal state. Considering the cutting-agent

translates or scales the object box bo with small magni-

tude, a reasonable action sequence would arouse small per-

formance change (measured by the interaction over union,

IoU) between neighboring states. To elaborately represent

the segmentation mask variation, we define the reward func-

tion as following:

r(st,k, st,k+1) =











+ α · 1, ∆ > +0.1

10 · α ·∆, −0.1 ≤ ∆ ≤ +0.1

− α · 1, ∆ < −0.1

where,

∆ = IoU(mt,k+1, yt)− IoU(mt,k, yt)

α =

{

1, aot,k 6= stop

3, aot,k = stop

(2)

where yt is the ground truth of frame ft.

From equation (2), we can observe that the reward

r(st,k, st,k+1) would be +α or −α when the segmentation

mask remarkably varies (the IoU value increases or decreas-

es more than 0.1). Otherwise, the reward r(st,k, st,k+1) is

linearly correlated with the IoU variation. Essentially, the

designed reward function r(st,k, st,k+1) magnifies the vari-

ation for slight IoU change, thus, the cutting-agent can e-

laborately perceive the impact of each action pair aot,k and

act,k, under current state st,k.

3.4. Deep Q­Learning

Given the current state st,k, the cutting-agent relies on

the CPN to determine the object searching action aot,k and

context embedding action act,k. As there is no exemplar

actions aot,k, act,k under specific state st,k, we address the

learning problem in the deep Q-learning manner [26]. We u-

tilize CPN to approximate the underlying action-value func-

tion Q∗(s, ao, ac). Precisely, the optimal action-value func-

tion Q∗(s, ao, ac) is approximated by updating Q(s, ao, ac)

according to:

Q(st,k, a
o
t,k, a

c
t,k) =















r(st,k, st,k+1)

+ γ max
ao
t,k+1

,ac
t,k+1

Q(st,k+1, a
o
t,k+1, a

c
t,k+1), aot,k 6= stop

r(st,k, st,k+1), aot,k = stop

(3)

where r(st,k, st,k+1) is the direct reward, calculated by e-

quation (2). Q(st,k+1, a
o
t,k+1

, act,k+1
) is the reward for state

st,k+1, when executing different action pairs aot,k+1
, act,k+1

.

γ is the discount factor, reflecting the connection between

current state st,k, action pair aot,k, act,k, and the future re-

ward. As for the conventional DRL methods, the agent may

explore thousands of steps before reaching the terminal tar-

get. Thus these methods preserve a large discount factor γ

(e.g. γ = 0.90) to effectively propagate the terminal reward

value to each intermediate state. In contrast, the proposed

cutting-agent only needs to adopt the object box bot and con-

text box bct within several steps. Consequently, we adopt

a small discount factor γ = 0.2 in this work, making the

action-value function Q(s, ao, ac) rely more on the direct

reward r(st,k, st,k+1).

4. DRL-based VOS

4.1. Train CEN

The proposed method follows the strategy of [30, 48] to

learn video segmentation model from static images. Specif-

ically, we begin with learning a CEN from static saliency

detection datasets. The CEN takes the network architec-

ture of the Fully-Convolutional DenseNet [14] and use FC-

DenseNet56. This network can directly learn from the im-

age segmentation data rather than fine-tunes a model pre-

trained on large scale data. The used saliency detection

datasets include MSRA10K [6], PASCAL-S [21], SOD [27]

and ECSSD [32]. As illustrated in Section 3.2, we expand

the raw video frame from RGB channels to RGB + object

box channel, indicating the accurate object location. The

images are resized to 224 × 224 to fit the network input.

Having trained the CEN with image saliency datasets, we

fine-tune the model with the annotated first frame in the

video sequence, so as to alleviate the difference between

the saliency datasets and the video dataset. Former works

[1, 16] generally learn the category-specific model for each

video sequence via online fine-tuning. In contrast, we apply

an identical model to tackle all sequences in the test dataset.

The training and fine-tuning process are based on data

augmentation with random crops and vertical flips. The

network parameters are optimized with RMSprop [35], the

learning rate is set as 1e− 4 and exponentially decays with

the factor 0.995 after each epoch. We monitor the mean
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Figure 5. Example video frames and the corresponding states and actions. The displayed frames are from boat and bmx-bumps in the

DAVIS dataset, respectively. The proposed method repeatedly adjusts object and context box, improves the segmentation mask step-by-

step. The object box and context box are shown in red and blue respectively. The dotted line indicates the object box propagated from the

former frame. Actions take the same meaning with those in Figure 4.

IoU and wait with the patience of 30 (15 for fine-tuning)

epochs. After training and fine-tuning, we can obtain the

CEN model. Essentially, the FC-DenseNet56 is based on

dense blocks, which consists of densely connected convolu-

tional layers. FC-DenseNet56 contains the down sampling

path and the up sampling path, respectively in charge of ex-

tracting the feature representation and up sampling the fea-

ture maps. We extract the feature maps from the CEN at the

end of the down sampling path, and regard it as the frame

information µt,k ∈ R
288×7×7 used in Section 3.2.

4.2. Train CPN

Although we desire to train the CPN in the DRL manner,

the only available training data is static saliency detection

data rather than the annotated sequential video data. Thus,

we add noise to the static saliency detection data so as to

simulate the object location variation among neighbor video

frames. In precise, before expanding the raw image from

RGB channels to RGB + object box channel, we translate

the object box bo to a random direction with a magnitude

of ηt ∈ (0, 0.2) relative to it current size. Then we zoom

or shrink the object box bo to random orientation (horizon

or vertical) with a magnitude of ηs ∈ (0, 0.2). The trans-

formed box b
′o is regarded as the initial object box for cur-

rent image. Given this noisy data, the CPN learns to prop-

erly translate or scale the object box, as well as select an

appropriate context box bc (illustrated in Section 3.1). Then

we crop the image according to the context box bc, resize

it to 224 × 224, and feed it to the CEN. Afterwards, the

mask produced by the CEN is restored to the original place,

generating the segmentation mask and the reward signal (il-

lustrated in Section 3.3). The CPN repeatedly interacts with

CEN, updates the network parameter (illustrated in Section

3.4), and finally acquires abundant knowledge for action

policies. After training CPN on static saliency detection

datasets, we fine-tune it with the annotated first frame in the

video sequence, so as to enhance the video specific object

knowledge.

The CPN is optimized by the RMSprop [35], where the

learning rate is set as 1e − 4 and decays exponentially. We

adopt the ǫ−greedy strategy [34] and exponentially anneal ǫ

from 0.9 to 0.05. For the purpose of suppressing the corre-

lation among training data, we utilize the experience replay

mechanism [24] with the memory volume 5000.

4.3. Test with CPN and CEN

During testing, the CPN does not update network param-

eters or receives the reward. For the given video sequence

with the annotated object mask of the first frame, the CP-

N adjusts the object box bo and selects a proper context

box bc. Then our method crops the frame according to bc

and uses the CEN to generate the object mask. Collaborat-

ing with CEN, CPN can progressively approach the optimal

foreground box and context box, and generates detailed seg-

mentation masks in the end. By repeating this process, the

proposed method can segment the object masks for the w-

hole video sequence. Some examples of the testing process

are shown in Figure 5.

5. Experiments

5.1. Experimental setup

Datasets. We evaluate the proposed learning framework

on two widely used VOS datasets, i.e., the DAVIS dataset

[30] and the YouTube-Objects dataset [10, 31]. The DAVIS

dataset [30] consists of 50 high-quality videos with total-

ly 3455 frames. It contains multiple common challenges

for VOS task, e.g. motion blur, occlusions and appearance

change etc. The YouTube-Objects dataset was initially built

by Prest et al. [31], then Jain et al. [10] provided pixel-level
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Figure 6. Visualization of segmentation masks for different methods on the DAVIS dataset. To be intuitive, we show the region similarity

J on each frame.

Table 1. Quantitative results of the comparison methods on the

DAVIS dataset, measured by the region similarity J , counter ac-

curacy F and temporal stability T . *m indicates mean, *r indi-

cates recall, *d indicates decay.

Jm↑ Jr↑ Jd↓ Fm↑ Fr↑ Fd↓ T↓

MSK[16] 80.3 93.5 8.9 75.8 88.2 9.5 18.9

ARP[18] 76.3 89.2 3.6 71.1 82.8 7.3 35.9

CTN[13] 75.5 89.0 14.4 71.4 84.8 14.0 19.8

VPN[12] 75.0 90.1 9.3 72.4 84.2 13.6 30.0

FSEG[11] 71.6 87.7 1.7 65.8 79.0 4.3 29.5

OFL[38] 71.1 80.0 22.7 67.9 78.0 24.0 22.4

LMP[36] 69.7 82.9 5.6 66.3 78.3 6.7 68.8

BVS[25] 66.5 76.4 26.0 65.6 77.4 23.6 31.7

OURS 83.9 96.9 5.7 83.6 91.7 2.48 26.8

Table 2. Comparison with OnAVOS on the DAVIS validation set.

Jm↑ Jr↑ Jd↓ Fm↑ Fr↑ Fd↓ T↓

OnAVOS[39] 86.1 96.1 5.2 84.9 89.7 5.8 19.0

OURS 84.1 97.0 5.4 84.6 92.3 3.7 25.7

annotations for 126 video sequences. This dataset consists

of 10 categories and more than 20000 frames.

Evaluation. On DAVIS, we follow [30] to simultaneous-

ly measure the region similarity J , counter accuracy F
and temporal stability T to present comprehensive anal-

ysis. Specifically, J is defined as the intersection-over-

union. Given a segmentation mask m and the correspond-

ing ground truth y, the region similarity J is calculated as

J = |m∩y|
|m∪y| . The counter accuracy F adopts F-measure to

measure the trade-off between counter-based precision Pc

and recall Rc. Specifically, it is calculated as F = 2PcRc

Pc+Rc
.

The temporal stability T compensates motion and smal-

l deformation. It simultaneously reveals oscillations and

inaccuracies of the contours. We calculate it on a subset

of DAVIS sequences by following [30]. On the YouTube-

Objects dataset, we measure J in comparison.

Table 3. Quantitative results of the comparison methods on the

YouTube-Objects dataset, measured by the region similarity J .
Category OFL MSK JFS BVS SCF OURS

aeroplane 89.9 84.5 89.0 86.8 86.3 85.2

bird 84.2 83.7 81.6 80.9 81.0 86.8

boat 74.0 77.4 74.2 65.1 68.6 79.9

car 80.9 64.0 70.9 68.7 69.4 67.2

cat 68.3 69.8 67.7 55.9 58.9 74.6

cow 79.8 76.7 79.1 69.9 68.6 74.6

dog 76.6 74.5 70.3 68.5 61.8 82.7

horse 72.6 64.1 67.8 58.9 54.0 73.6

motorbike 48.1 89.2 61.5 60.5 60.9 73.7

train 76.3 74.4 78.2 65.2 66.3 83.0

Mean 77.6 71.7 74.0 68.0 67.6 78.1

5.2. Quantitative and qualitative comparisons

In this section, we compare the proposed method with

state-of-the-art VOS methods on two benchmark datasets.

On the DAVIS dataset, we compare with MSK [16], ARP

[18], CTN [13], VPN [12], FSEG [11], OFL [38], LMP

[36], BVS [25]. All of these methods are evaluated on the

50 video sequences on the complete DAVIS dataset. Table

1 summarizes the quantitative results of each method. It

is encouraging to observe that out method consistently out-

performs the existing state-of-the-art methods under three

measures. Compared with the most competitive method M-

SK [16], our method improves mean J and mean F (which

are the higher the better) by 2.6% and 7.8% respectively,

and decreases the mean T (which is the lower the better)

by 1.1%. This quantitative result demonstrates the effec-

tiveness of the proposed framework. In addition, we also

compared the proposed approach with OnAVOS [39] on the

DAVIS validation set. The comparison results are shown in

Table 2. Figure 6 shows the qualitative segmentation masks

for different approaches.

On the YouTube-Objects dataset, we compare with

the recent state-of-the-art methods, including OFL [38],
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MSK[16], JFS[28], BVS[25] SCF[10], and OnAVOS [39].

Among these methods, OnAVOS [39] can achieve 77.4 in

terms of the mean region similarity J . While the quantita-

tive comparison results (in terms of the mean region simi-

larity J ) of other methods are reported in Table 3. These re-

sults demonstrate the effectiveness of the proposed method.

5.3. Ablation studies

To investigate the impact of each component, we conduct

the following ablation studies on the DAVIS dataset.

Channel expanding and frame cropping: In our frame-

work, there are two factors that may effect our final results.

We first study the frame cropping operation. To evaluate

this factor, we implement two baselines. The first one is

named as RGB, which trains CEN with three channel-input

images and tests on each input video frame independently.

The second one is named as RGB+C. It trains CEN by us-

ing the same strategy as the RGB baseline. However, in

the testing phase, it performs segmentation on the cropped

image region that encloses the object box (obtained in the

previous frame) with context radio 0.4. In order to evaluate

the channel expanding factor, we add an additional channel,

i.e., the box channel, into the aforementioned two baselines,

which forms the RGBB baseline and RGBB+C baseline,

respectively.

Table 4 shows the performance of the aforementioned

baselines, where we use the mean region similarity J for

analysis. As can be observed, RGBB exceeds RGB by

6.4%, RGBB+C exceeds RGB+C by 5.8%. This indicates

that the object box channel is important in our framework.

Besides, the performance gap between RGB+C and RGB

is 3.5%, the performance gap between RGBB+C and RG-

BB is 3.1%. This demonstrates the necessity of considering

the information from the former frame. Although RGB-

B+C performs good, its performance is 7.1% lower than our

complete approach. To our best knowledge, there are two

reasons for this performance drop, 1)the object box propa-

gated from the former frame is inaccurate and misleading,

2) the fixed zoom factor between context box bct and object

box bot cannot adapt to the various video frames. From these

results, we can conclude that the information cues provided

by the object boxes and the corresponding context boxes are

beneficial for object segmentation.

Object searching action and context embedding action:

To study the influence of agent actions, we alternatively re-

move the object searching action aot and context embedding

action act from our complete approach. Specifically, we first

use the cutting-agent to obtain context box bct and fill the

entire object channel to 255, obtaining OURS-O method.

Then, we apply the cutting-agent to adjust the object box

bot . We zoom bot with a factor α = 0.4 to obtain context box

bct . This method is named as OURS-C.

From the results in Table 4, we can observe that com-

Table 4. Ablation studies of the proposed method on DAVIS

dataset, measured by the region similarity J , counter accuracy F

and temporal stability T . *m indicates mean, *r indicates recall,

*d indicates decay.
Jm↑ Jr↑ Jd↓ Fm↑ Fr↑ Fd↓ T↓

RGB 67.5 77.4 25.0 66.6 78.4 22.6 32.7

RGB+C 71.0 83.8 11.6 66.9 70.1 12.8 33.1

RGBB 73.9 87.9 14.9 69.7 80.6 12.5 22.4

RGBB+C 76.8 91.4 11.7 76.6 86.6 10.1 20.1

OURS 83.9 96.9 5.7 83.6 91.7 2.5 17.8

OURS-O 78.6 91.7 9.5 74.5 86.0 10.1 20.3

OURS-C 80.7 93.8 8.2 75.8 88.2 9.4 19.2

OURS-F 78.7 95.5 6.8 77.5 94.9 12.8 23.8

NetD 85.4 97.3 5.2 84.5 92.3 2.3 15.7

pared with our complete approach, using OURS-O and

OURS-C would obtain 5.3% and 3.2% performance drop,

respectively. This demonstrates that both precise object

(box) region and context (box) region are critical for per-

forming high-quality object segmentation, which also vali-

dates our assumption that object segmentation is essentially

a kind of interaction between the object region and its con-

text.

Fine-tune and deeper network: To evaluate the effect of

the fine-tuning process, we first test the performance of re-

moving the fine-tuning process from the complete method,

which obtains the OURS-F baseline. In addition, to study

the influence of using deeper base network architecture in

our framework, we adopt the FC-DenseNet67 [14] as the

architecture of CEN, which forms the NetD baseline.

As shown in in Table 4, there is a decrease of 5.2% be-

tween OURS and OURS-F, which reflects the impact of

fine-tuning on the annotated video frames. In addition, the

NetD brings 1.5% improvement over OURS, revealing that

a deeper network architecture for CEN can further improve

the segmentation results of our approach.

6. Conclusion

In this paper, we make a pioneer effort to formulate the

video object segmentation problem as a Markov Decision

Process and propose a novel reinforcement cutting-agent

learning framework to tackle this problem. With the suc-

cessive cooperation of the cutting-policy network and the

cutting-execution network, the proposed method can seg-

ment out the target object with the interaction between the

predicted object box and the context region. Comprehen-

sive experiments on two benchmark datasets demonstrate

the effectiveness of the proposed method. In future, we

plan to deploy this method into some vision tasks, such

as semantic segmentation [41, 42], object localization [47],

saliency estimation [46], and 3D shape learning [45], .
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