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ABSTRACT
Visual-semantic embeddings are central to many multimedia ap-
plications such as cross-modal retrieval between visual data and
natural language descriptions. Conventionally, learning a joint em-
bedding space relies on large parallel multimodal corpora. Since
massive human annotation is expensive to obtain, there is a strong
motivation in developing versatile algorithms to learn from large
corpora with fewer annotations. In this paper, we propose a novel
framework to leverage automatically extracted regional semantics
from un-annotated images as additional weak supervision to learn
visual-semantic embeddings. The proposed model employs adver-
sarial attentive alignments to close the inherent heterogeneous
gaps between annotated and un-annotated portions of visual and
textual domains. To demonstrate its superiority, we conduct exten-
sive experiments on sparsely annotated multimodal corpora. The
experimental results show that the proposed model outperforms
state-of-the-art visual-semantic embedding models by a significant
margin for cross-modal retrieval tasks on the sparse Flickr30k and
MS-COCO datasets. It is also worth noting that, despite using only
20% of the annotations, the proposed model can achieve competi-
tive performance (Recall at 10 > 80.0% for 1K and > 70.0% for 5K
text-to-image retrieval) compared to the benchmarks trained with
the complete annotations.
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1 INTRODUCTION
Learning robust visual-semantic embeddings is central to the suc-
cess of many multimedia applications involving multiple modalities
such as cross-modal search and data mining [46]. The embedding
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Figure 1: (Left) We consider learning under a sparsely an-
notated parallel corpus with abundant un-annotated im-
ages and limited (image, natural language sentence) pairs.
(Right) Performance degeneration of state-of-the-art cross-
modal retrieval models in the text-to-image retrieval task
on Flick30K. (5 sentences/image.)
model aims at encoding and mapping knowledge of multimodal
entities into a joint embedding space. The transformation function
is typically learned by aligning paired-inputs from two or more
distinct domains (e.g., images and natural language descriptions)
into the common latent space where the embeddings are close if
they are semantically associated or distant if uncorrelated.

Recently, deep neural networks have made significant advance-
ment for learning joint embeddings [6, 21, 30, 36, 52]. Such success is
largely attributed to the availability of large-scale human-annotated
parallel corpora such as the MS-COCO [32] and Flickr30K [51]
datasets. Essentially, there are more than 610,000 and 150,000 anno-
tated image-text pairs in MS-COCO and Flickr30K, respectively. As
pointed out in [4], on par to quantity, the annotation diversity is
also crucial for downstream tasks. Although models trained with
affluent amount of well-annotated image-text pairs can achieve
reasonable performance, we observe that the trend does not gen-
eralize to more common cases where only a limited amount of
parallel annotations are available. As shown in Figure 1, recent VSE
models [6, 30, 36, 43] all suffer greater degeneration as annotations
become more sparsely available. (See Sec. 4 for experimental de-
tails.) Since collecting massive and high-quality human annotations
for multimedia corpus is often prohibitively expensive and imprac-
tical, there is a strong incentive to designing annotation efficient
algorithms to reduce the cost.

In this paper, we deal with the sparse parallel corpus scenario
(Figure 1) where for cross-modal search and retrieval, a large col-
lection of visual data is available but only a small amount of them
are annotated with corresponding text descriptions. We pose an
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challenging yet rewarding question:Canwe learn satisfactory visual-
semantic embedding with a sparse parallel corpus? Despite some
recent progress [25, 31, 41], learning with small amount of parallel
data is still challenging and to be developed in urgent need.

A straightforward way to deal with a sparse parallel corpus
is to directly utilize the machine generated semantics of the im-
ages. In [35], Mithun et al. proposed a webly approach to utilize
the global tags of the images. However, without handling the in-
evitable domain gap between the natural language description and
the machine generated tags properly, the visual-semantic embed-
ding learning could be negatively affected, which largely limits the
the performance.

To circumvent these issues, inspired by the observation in [2]
where bottom-up attention over regional objects aligns well with
human’s visual system, we propose to utilize “regional semantics"
which correspond to the regions-of-interest in the un-annotated
images and leverage the textual sequences of them to form “pseudo"
image-text pairs as the additional weak supervision to conquer the
sparsity of image-text annotation. Each regional semantic consists
of the category of visual object and its attributes (e.g. white cat)
which can be automatically extracted with object detection mod-
ules [1, 39]. With the inferred regional semantics, we develop a
novel method to learn the joint visual-semantic embedding space
from both the annotated pairs and the inferred pairs efficiently. To
minimize the inherent domain gaps between annotated and un-
annotated portion of visual and textual domains, we further impose
an attentive alignment with adversarial learning objectives to selec-
tively improve the correlation of semantically close components.

We conduct extensive experiments to quantify the degeneration
of current state-of-the-art cross-modal retrieval models in the prac-
tical sparse parallel corpus scenario and to show the superiority of
the proposed adversarial attentive alignment model for learning
visual-semantic embeddings (A3VSE). In terms of reducing annota-
tion effort, in comparison to various recently benchmarks trained
with the complete annotations, the proposed model achieves a com-
petitive performance with only 20% of annotations (Recall at 10 >
80.0% for 1K text-to-image and 70.0% for 5K text-to-image retrieval
on Flickr30K and MS-COCO, respectively).

In a nutshell, our contributions can be summarized as

• We quantify the impact of learning with common sparse
parallel corpora for the state-of-the-art cross-modal retrieval
models and shed new insight for annotation efficiency.

• We propose to extract and leverage regional semantics to
weakly supervise visual-semantic representation learning.

• We introduce adversarial attentive alignment to deal with
multiple heterogeneous domain gaps. The attention mecha-
nism emphasizes the visual or textural informative part to
enable effective alignment.

• Experimental results of cross-modal retrieval on the Flickr30k
and MS-COCO datasets demonstrate the superiority of our
method to the state-of-the-art methods, under the same
sparse parallel corpus setting. It is worth noting that, even
trained with only 20% of the annotations, our model achieves
competitive performance to recent models trained with the
complete annotations.

2 RELATEDWORKS
Visual-Semantic Embeddings forCross-ModalRetrieval: Joint
visual-semantic embeddings (VSE) have shown great potential in
many multimedia tasks, including cross-modal retrieval [8, 21, 26],
visual question answering [3, 12], image captioning [2, 49], muilti-
modal classification [15], etc. Recently, there are increasing interest
in developing system to match natural language descriptions to
visual data with VSE [6, 21, 44, 48] for cross-modal retrieval.

In former works, the improvements in VSE are mainly processed
on two perspectives: feature learning model and loss function. Var-
ious feature learning models have been extensively studied. For
the textual feature, the conventional models introduce Fisher vec-
tors [38] for word embeddings [34, 37] as in [8, 27, 47, 48]. Alterna-
tively, recurrent neural networks (RNNs) [14] have been applied
in many latest models [6, 17, 18, 20–22, 30, 36] and Zheng et al.
suggest a convolutional structure in [52]. For the visual feature,
VGG [40] and ResNet [13] models are widely implemented in pre-
vious works. Recently, Lee et al. [30] proposed to extract regional
features from Faster-RCNN model [39]. Attention mechanisms also
have been studied in the area [17, 22, 30, 36]. These works learn to
select input fragments based on the context from either the same
modality [17, 21, 36] or from another modality [30] or both [16].
In [18, 45], additional semantic features has been utilized in a multi-
task schema. In contrast, in this work, we use image-semantic pair
as the weak supervision for learning VSE with sparse corpora.

Most recent works in VSE leverage triplet loss [6, 8, 21, 27, 30, 36,
47, 48]. In [26], Kiros et al. proposed to use a triplet ranking loss to
penalize the model with individual violations across the negatives.
In [47, 48], Wang et al. add a within-view neighborhood structure-
preserving constraints to further preserve the intra-modal structure.
In VSE++ [6], Faghri et al. empirically show that emphasizing hard
negative examples results in robust joint embeddings. Adversarial
objective for cross-modal retrieval is firstly introduced in [45, 50]
which narrow down the gap between different modalities by reg-
ularization via a domain discriminator. Our work generalize the
idea about domain alignment and target on a more common but
challenging sparse corpora scenario, where all the above models
struggle without a plethora of parallel annotations.

Learning with Limited Supervision: Training models with
sufficient amount of annotated data could achieve considerable
performance for cross-model retrieval. However, in practice it is
difficult to obtain a large amount of well-annotated data [25]. To
address this problem, several previous works proposed to utilize
web images and their meta data as an auxiliary source of training
data [31, 41]. Meanwhile, there are studies focusing on learning
with limited supervision. Jiang et al. proposed a coupled dictio-
nary learning method to learn the class prototypes that utilize the
discriminative information of visual space to improve the less dis-
criminative semantic space in [19]. Tsai et al. augmented a typical
supervised formulation with unsupervised techniques for learn-
ing joint embeddings of visual and textual data in [42]. Although
promising performance has been obtained, none of these works
consider the sparse parallel corpus setting.

To the best of our knowledge, the most relevant work to ours
are [11, 35], where the authors resource meta data and image tags
(i.e. global semantics) to improve learning of joint embedding space.
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Our work complements their effort in two perspectives: First, we
explore the feasibility of automatic regional semantics as they are
more similar to natural language descriptions and leverage them
for training improved sequential text encoder. Furthermore, we
consider to close the inherent heterogeneous domain gaps with
adversarial attentive alignment.

3 METHODOLOGY
We consider a common scenario where annotated image-text pairs
are sparsely available and un-annotated images are abundant.While
manually annotating images with natural language descriptions
is expensive, automatically indexing them with semantic tags is
relatively efficient [5]. Inspired by the bottom-up approach by [2],
instead of resourcing global semantic tags as in [35], we seek to
leverage semantics of salient regional objects which aligns well
with the natural attention in human’s cognition system to form
additional image-semantic pairs for training. However, the inferred
regional semantics exhibit clear difference to the natural language
descriptions as in the annotated image-text pairs. A judicious way
incorporating in these “pseudo” image-semantic pairs across het-
erogeneous domains for learning visual-semantic embeddings is
therefore important.

Figure 2 illustrates the proposed adversarial attentive alignment
model for learning visual-semantic embeddings (A3VSE). The pro-
posed model jointly leverages the strong supervision from the anno-
tated image-text pairs and the weak supervision from the inferred
image-semantics pairs. Furthermore, A3VSE employs attentive ad-
versarial objectives to selectively align entities from the annotated
and un-annotated portion of visual and textual inputs and narrow
the domain gaps in between.

3.1 Problem Formulation
Let Dl = {I1, · · · , INl } be an annotated collection of instances
where each instance Ii = (v, t) consists of the imagev and the corre-
sponding natural language description t . Let Du = {vu1 , · · · ,v

u
Nu

}

denotes the collected but un-annotated images. We name D =

Dl ∪ Du where Nl << Nu , as a sparse parallel corpus. We aim
to utilize the un-annotated data Du , together with the annotated
data Dl , to learn better visual-semantic embeddings.

3.2 Feature Extractors
Let Fv and F t denote the visual feature extractor and the textual fea-
ture extractor, respectively. We model Fv as a fixed object detection
model (e.g. Faster RCNN), followed by a trainable fully-connected
layer for mapping raw visual features in Faster RCNN into a H -
dimension joint embedding space. On the other hand, F t encodes
the word tokens in a sentence with a word embedding matrix, fol-
lowed by a trainable long short-term memory (LSTM) network to
model the sequential text inputs. Note that the encoders Fv and F t
are shared among Dl and Du .

The visual feature of an image v is encoded as V = Fv (v) =
[v1, · · · ,vN ] ∈ RH×N , whereN is the maximum number of region-
of-interest. Similarly, a sentence t = [t1, · · · , tM ] is encoded as
T = F t (t) = [t1, · · · , tM ] ∈ RH×M , where M is the maximum
sentence length. (Vi ,Ti ) represents an annotated feature pair.

For vu ∈ Du , we utilize an object detector (Faster RCNN [39])
to extract sequences of regional semantics (as text tokens, s =
[s1, · · · , sM ]) and generate image-semantic pairs (Vu

i , Si ). The re-
gional semantics are the word tokens of attribute and the class
name of the objects detected from an imagevu (e.g. “blue car”). The
detected textual tokens are sorted by their object-wise confidence
scores. We concatenate the regional semantics into one sentence,
and then encode it as S = [s1, · · · , sM ] ∈ RH×M via the shared F t .

3.3 Adversarial Attentive Alignment
For learning and aligning instance-wise representation in individual
modalities, we apply an attention network which focuses on certain
encoded region/ tokens of inputs with respect to the global context
from the same modality. We leverage aK-head context-aware atten-
tion network to capture the interactions between encoded entities
and select informative ones for cross-modal alignment.

Given the feature representations (i.e. the visual features V or
the texture featuresT ), the attentive encoder can be written as (we
take visual features as an example):

Ev (V ) = [W v
0 V

⊤,W v
1 V

⊤, · · · ,W v
K−1V

⊤] (1)

where

W v
ik =

exp (λvαvik )∑
i′ exp (λvαvi′k )

,

αvik = tanh(Pvk
1

Mv

∑
i′

vi′)
⊤ tanh(Qv

kvi ).

TheW v
k ∈ R1×M

v , and Pvk ,Q
v
k ∈ RK

′×H , k ∈ {0, 1, · · · ,K − 1}
are the parameters of the attentive encoder Ev , i.e. θv−attn =
{(W v

k ,P
v
k ,Q

v
k )|k ∈ {0, 1, · · · ,K−1}}. The λv is a constant tempera-

ture for the softmax function. The attentive encoder for the textural
features (denoted by Et (T )) works the same way but with indepen-
dent parameters θt−attn = {(W t

k ,P
t
k ,Q

t
k )|k ∈ {0, 1, · · · ,K − 1}}.

Note that Et and Ev are shared among Dl and Du .
Thus, for an image v or vu , the instance-level feature repre-

sentation can be extracted and selectively encoded through Gv =

Ev ◦Fv . Correspondingly, for the text description t or s , the instance-
level feature can be achieved by Gt = Et ◦ F t . We use θv =
{θv−attn ,θv−enc } and θt = {θt−attn ,θt−enc } to denote the train-
able parameters of Gv and Gt , respectively.

Triplet Alignment. For learning the joint embedding, we apply
a hinge-based triplet ranking loss with hard negative mining as
in [6] to align instance-wise paired visual-textual representations.
Let (a,b) denotes a sampled image-text or image-semantic pair
and S(a,b) is the cosine similarity. Let b̂ = argmax

b−
S(a,b−) and

â = argmax
a−

S(a−,b) denote the hard negatives in the sampled
batch. The triplet objective can be written as:

ℓp (A,B;α) = 1
L

L∑
i=1

{
[
α − S(ai ,bi ) + S(ai , b̂)

]
+

+
[
α − S(ai ,bi ) + S(â,bi )

]
+
}, (2)

where |A| = |B| = L, [.]+ =max(0, .), and α is the margin between
the similarity of positive pair and that of hard-negative pair. Since
annotated image-text pairs sampled fromDl are more reliable than
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Figure 2: The proposed adversarial attentive alignment model for learning visual-semantic embeddings (A3VSE) for sparsely
annotated multimodal corpora. Our model incorporates pseudo “image-text” pairs (illustrated as the bottom image-semantic
pair) from the sequence of regional semantics of salient visual objects in un-annotated images. The triplet objectives (colored
in red) and adversarial objectives (colored in blue) attend and align semantically correlated instances in the joint embedding
space while closing the heterogeneous domain gaps between the annotated/un-annotated portion of visual and textual inputs.

image-semantic pairs sampled fromDu , we differentiate the strong
supervision by the former from the later with a hyper-parameter β .
We model the triplet alignment objective as:

ℓtr i = βℓp (Gv (v),Gv (t);αvt ) + (1 − β)ℓp (Gv (vu ),Gt (s);αvs )
(3)

A3VSE takes four different types of data, i.e. V ,T , Vu , S which
are regarded as samples from four different domains. As shown in
Figure 2, we propose using adversarial training to minimize the
domain gaps among them. Specifically, we introduce six domain
discriminators which are parameterized by θvvu , θts , θvt , θvu s ,
θvs , and θvu t . On one hand, they are trained to classify samples
into correct domains. On the other hand, we employ the gradient
reversal layer (GRL) [9] to the reverse the gradients propagated from
these discriminators to update Gv and Gt to minimize the domain
discrepancy. Such adversarial process can effectively diminish the
discrepancy across different domains.

Generally, the adversarial loss for aligning two domains is

ℓd (A,B;θ ) = 1
|A|

|A |∑
i=1

logDθ (ai ) +
1
|B|

|B |∑
j=1

log(1 − Dθ (bj )) (4)

where Dθ is the domain discriminator parameterized by θ . The
A = {ai } and B = {bj } are the mini-batch data sampled from
two domains. The instantiations of a and b can be either two of
{Gv (v),Gv (vu ),Gt (t),Gt (s)}. As shown in Figure. 2, we perform
three types of alignments, i.e. intra-modal alignment, Cross-modal
alignment, and Transitive alignment, which are described as follows.

Intra-modal Alignment handles the domain gaps between the
annotated and un-annotated images, and annotated text descrip-
tions and sequences of regional semantics. Specifically,

ℓintra = λvvu ℓ
d (Gv (v),Gv (vu );θvvu )

+ λts ℓ
d (Gt (t),Gt (s);θts ) (5)

Cross-modal Alignment aims at aligning the distribution of
attended visual and textual features for annotated image-text pairs
and inferred image-semantic pairs. That is,

ℓcross = λvt ℓ
d (Gv (v),Gt (t);θvt )

+ λvu s ℓ
d (Gv (vu ),Gt (s);θvu s ) (6)

Transitive Alignment minimizes the domain gap between an-
notated images and sequences of regional semantics, and the do-
main gap between un-annotated images and annotated text descrip-
tions:

ℓtrans = λvs ℓ
d (Gv (v),Gt (s);θvs )

+ λvu t ℓ
d (Gv (vu ),Gt (t);θvu t ) (7)

The overall adversarial objective for the attentive alignment is:

ℓadv = ℓintra + ℓcross + ℓtrans (8)

And the final objective can be formalized as

ℓA3V SE = ℓadv + ℓtr i (9)
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3.4 Optimization
Training and Inference. A min-max optimization is performed
between the domain discriminators and attentive encoders:

(θv ,θt ) = argminθv ,θt ℓ
A3V SE (θ )

(θadv ) = argmaxθadv ℓ
A3V SE (θ ),

(10)

where θadv ≜ (θvt ,θvu s ,θts ,θvvu ,θvs ,θvu t ). In each iteration,
we sample a mini-batch of (v, t) from Dl and (vu , s) from Du

then follow the common practice in [9] of adversarial training
with GRL to optimize Eq. 9. At the inference stage, we extract the
visual embedding for image v and textual embedding for sentence
t through Gv and Gt .

Discussion. In A3VSE, attentive encoders and adversarial align-
ment cooperate to learn satisfactory visual-semantic embeddings.
On one hand, attentive encoders emphasize the informative part
of the visual regions or textual entities, which helps adversarial
training avoid misalignment and learn more discriminative fea-
tures; on the other hand, adversarial alignment contributes to the
improvement of attention mechanism of the attentive encoders in
individual modalities which otherwise may be biased by the less
amount of parallel image-text data.

4 EXPERIMENT
We perform extensive experiments to confirm the superiority of the
proposed A3VSE model over competitive baselines with sparsely
annotated multimodal corpora. We evaluate the learned visual-
semantic embeddings in cross-modal retrieval tasks on two standard
benchmark datasets (Flickr30K [51] and MS-COCO [32]) with the
main goal of building an annotation efficient cross-modal retrieval
model.

4.1 Dataset and Metric
We consider two commonly used benchmark datasets with natural
language image descriptions: Flickr30K [51] and MS-COCO [32].
We constrain the amount of image-text annotations available in
the training phase as an analogy to real-world scenarios where
annotations are typically sparsely available.
Flickr30K [51]: There are 31,783 images and 158,915 image-text
pairs in the Flick30K dataset. Five English descriptions are anno-
tated for each image. We start with the standard split defined in [21]
with 29,000 training, 1,000 validation, and 1,000 testing images. For
learning with limited parallel pairs, we randomly shuffle once and
trim the training set into 14,500 (50%), 5,800 (10%), and 2,900 (10%)
subset of images.We sample 1, 2, and 5 text descriptions correspond-
ing to those images. The resulting sparse training set is with size
2,900 (2%) to 72,500 (50%) out of 145,000 (100%) training image-text
pairs in the original training split. The statistics of the new training
splits of sparse Flickr30K can be found in Table 1. The standard
validation and the testing are used for model selection and testing.
MS-COCO [32]: The MS-COCO dataset contains 123,287 images
where each image is annotated with five English descriptions. In
total, 616,435 image-text pairs are available. We follow the widely
used split in [21] to move originally left 30,504 validation images to
the training set, resulting a training set of 113,287 training images
and 566,435 image-text pairs. We follow the same procedure as per-
formed in Flickr30K and sample 5,664 (5%), 11,382 (10%), and 22,657

(20%) images along with 1, 2, 5 corresponding text descriptions. The
statistics and the amount of training pairs can be found in Table 3.
We report the testing performance on the whole 5,000 testing set.
Metric: As in most prior work on cross-modal retrieval tasks [6,
30, 36, 52], we measure rank-based performance by recall at K
(R@k). Given a query, recall at k (R@k) calculates the percentage of
test instances for which the correct one can be found in the top-K
retrieved instances. We report R@1, R@5, and R@10.

4.2 Experimental Setup and Baselines
We focus on the text-to-image retrieval task (searching images
with a natural language description as the query) and the image-to-
text retrieval task (searching sentences with a query image) with
the learned visual-semantic embeddings. We train models under
different levels of training sparsity. Model selection and testing are
with the full validation and the full testing set, respectively.

For all the baselines, we use their best single model settings and
the code from their publicly available Github repositories. Since
there are much less paired training instances in sparsely annotated
dataset, for fair comparison and in prevention of under-fitting, we
either keep the number of (mini-batch) training iterations as 50%
iterations of the full dataset or extend the training epoch by 1.2x (for
50% annotations), 2.0x (20% annotations) and 2.5x (10% annotations).
Early stopping and learning rate adjustment in the baselines follow
the same adjustment if feasible.
Unsupervised baseline with image-level semantics We build
an unsupervised cross-modal retrieval baseline using NO paral-
lel annotations. Image-level semantics (i.e., global semantics) of
each image are extracted using pre-trained models from the fol-
lowing datasets: (1) Open Image [29]: 5,000 semantics trained on
9 million images. (2) ImageNet Shuffle [33], 12,073 classes defined
in ImageNet. (3) Place365 [53]: 365 visual scene types. (4) Google
Sports [23]: 478 sport-related semantics. We remove duplicated
semantic concepts, normalize the scores, and then merge them into
a 16500-dimension global semantic vector sд for each image. Each
dimension can be referred to a semantic concept in the original
dataset. For example, an “aquarium” in Place365.

For retrieval, we directly match image-level semantics (tags)
to text. Specifically, we expand the tokens in a sentence with the
synsets defined in WordNet[7] and construct a 16500-dimension
k-hot query vector q, where k is the number of matched concepts.
The matching score is calculated as r = sTд q.

4.3 Implementation Details
We now detail the pre-processing and implementation of the pro-
posed model. To identify and vectorize salient visual objects in
images, we use the Faster RCNN model [39] in [2] to detect objects
and extract their corresponding visual features V ∈ R36×2048. 36 is
the maximum number of ROI in an image and 2,048 is the dimen-
sion of the flattened 5-th pooling layer of Faster RCNN [39]. We
use raw features without l2 normalization.

For regional semantics in un-annotated images, we use the Faster
RCNN model in [2] fine-tuned on Visual Genome [28] to extract
English attribute names and class names of the objects detected from
an image. Specifically, for every un-annotated image vuj ∈ Du , we
generate sj = [sj1∥sj2 · · · ∥sj |ROI |] where “∥” is concatenation and
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Sparse Flickr30K Ours (A3VSE) SCAN [30] (SOTA)
%
Img

#
Sent

%
Ann

# Ann
Pairs

Text-to-Image Image-to-Text Text-to-Image Image-to-Text
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

10% 1/5 2% 2,900 20.7 46.0 58.5 27.6 56.2 68.1 2.0 7.2 11.7 5.1 16.0 22.9
10% 2/5 4% 5,800 28.1 55.6 66.9 42.0 69.7 79.0 16.1 35.7 46.5 18.9 39.8 53.9
10% 5/5 10% 14,500 32.0 60.1 71.0 46.8 72.8 80.7 24.6 48.1 59.3 25.9 56.3 70.9
20% 1/5 4% 5,800 29.1 56.4 68.1 43.3 71.0 81.8 17.2 37.5 47.5 21.2 44.4 55.0
20% 2/5 8% 11,600 32.6 61.6 72.3 44.8 72.7 82.8 28.4 54.0 64.6 39.0 68.0 78.6
20% 5/5 20% 29,000 34.9 64.4 73.6 48.4 77.0 85.1 29.3 56.9 68.3 42.1 71.8 81.3
50% 1/5 10% 14,500 36.7 65.1 75.9 51.6 78.7 85.7 29.5 56.3 67.3 40.2 72.2 81.4
50% 2/5 20% 23,200 42.9 70.5 80.3 61.4 83.7 89.4 33.9 61.3 71.4 46.8 75.2 84.5
50% 5/5 50% 72,500 44.5 73.8 83.3 60.9 85.7 91.6 39.2 67.5 77.2 52.6 80.3 87.5

Table 1: Performance comparison on the 1K testing set of Flickr30K. The models are trained with the sparsely annotated
training data as specified in the left column. % Img stands for the percentage of training images available compared to original
training images in Flickr30K. # Sent stands for the number of paired text descriptions available for each image. %/# Ann is the
percentage/number of annotations used for training compared to the complete training annotations in Flickr30K.

Text-to-Image Image-to-Text
Model R@1 R@5 R@10 R@1 R@5 R@10

Flickr30K 0% Ann, 0 pairs
sд baseline 10.5 21.5 29.2 12.1 24.0 31.1

Flickr30K 10% Img, 5/5 Sent, 10% Ann, 14,500 pairs
DPC [52] 8.5 26.0 40.9 11.8 45.5 66.0
DAN [36] 10.1 25.3 42.8 12.2 41.7 64.5
VSE++ [6] 7.2 27.5 40.5 10.5 40.2 62.8
SCAN [30] 24.6 48.1 59.3 25.9 56.3 70.1
Ours (A3VSE) 32.0 60.1 71.0 46.8 73.2 80.7

Flickr30K 50% Img, 2/5 Sent, 20% Ann, 29,000 pairs
DPC [52] 26.4 53.0 63.9 35.8 68.5 79.7
DAN [36] 26.9 52.3 64.8 37.2 69.9 78.2
VSE++ [6] 27.3 54.5 66.0 33.5 65.2 78.2
SCAN [30] 33.9 61.3 71.4 46.8 75.2 84.5
Ours (A3VSE) 42.9 70.5 80.3 61.4 83.7 89.4

Flickr30K 100% Ann, 145,000 pairs
DPC [52] 39.1 69.2 80.9 55.6 81.9 89.0
DAN [36] 39.4 69.2 79.1 55.0 81.8 89.5
VSE++ [6] 39.6 70.1 79.8 53.1 82.1 87.5
SCAN [30] 45.8 74.4 83.0 61.8 87.5 93.7
Ours (A3VSE) 49.5 79.5 86.6 65.0 89.2 94.5

Table 2: Performance comparison with baselines on two
sparse settings in Flickr30K.

sk = [Attributek Classk ] (e.g. “blue car”). There are 2,000 detectable
objects and attributes. These regional semantics are then sorted
by the confidence scores and concatenated as a text sequence. We
group the image and the sequence and encode them as an image-
semantic pair (Vu , S).

In our model, we set the embedding dimension H to 512. The
same dimension is shared by all the context vectors in the attention
modules. For text pre-processing, we tokenize, lower-case, truncate
maximum sentence length to 57 on MS-COCO and 82 on Flickr30K,
and then remove word tokens which appear less than 4 times.
Similar to [52], we initialize word embeddings with pre-trained
Glove embeddings [37]. All the weights within the network are
initialized with Xavier initialization [10]. Other hyper-parameters

(a) 20% Img, 5/5 Sent (b) 10% Img, 5/5 Sent (c) No s in (b)
Figure 3: t-SNE visualization of the embedded testing im-
ages (blue) and sentences (red) under sparse Flick30K. Paired
ones are expected to be close to each other.

are set as follows: K = 3,αvt = 0.2, αvs = 0.3, β = 0.8, and
γ = 2/(1 + exp(−ηp)) − 1 as in [9] where η = 10 and p is linearly
increased from 0 to 1 in proportional to the training epoch. The
hyper-parameters for the adversarial object is set as: Intra-modal
alignments:λvvu = 0.2, λts = 0.1; Cross-modal alignments:λvt =
0.5, λvu s = 0.5; Transitive alignments:λvu t = λvs = 0.3.

For training, we train 24 epochs with Adam [24] optimizer. Learn-
ing rate is first 0.0005 then 0.00005 after 16th epoch. Models with
the greatest summation of recall at 1, 5, 10 in the validation set are
selected for testing. Weight decay is set to 0.000001 and gradients
larger than 2.0 are clipped. The batch size is 128.

4.4 Results on Sparse Flickr30K
Table 1 shows the testing results with various levels of training
sparsity on Flickr30K. Comparing the performance under the same
percentage of annotations, the first interesting observation is that
generally speaking it is preferred to have diverse images annotated
than annotating a small amount of images with more text descrip-
tions. With the same 10% annotations, it is better to annotate 50%
of images with one sentence each than 10% of images with five
sentences. These results suggest that regarding data collection and
annotation, visual diversity is likely to be more important than
textual diversity. Two cases of t-SNE visualization of the learned
embedding are shown in Figure 3a and Figure 3b.

Under all sparse training set settings, the proposed model out-
performs current state-of-the-art cross-modal retrieval model [30]
by a significant margin. Namely, 4.2 to 18.7 in R@1, 6.3 to 38.8 in
R@5, and 5.3 to 46.8 in R@10 text-to-image retrieval tasks. Notably,
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Sparse MS-COCO Ours (A3VSE) SCAN [30] (SOTA)
%
Img

#
Sent

%
Ann

# Ann
Pairs

Text-to-Image Image-to-Text Text-to-Image Image-to-Text
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

5% 1/5 1% 5,664 14.2 35.8 48.9 19.2 44.2 57.4 9.0 24.4 35.0 9.5 27.2 38.9
5% 2/5 2% 11,328 16.1 39.5 52.8 22.2 47.8 61.8 12.7 31.6 42.9 11.9 33.1 46.1
5% 5/5 5% 28,320 19.7 44.4 57.7 27.8 55.9 68.8 16.8 40.0 52.6 21.0 47.3 61.2
10% 1/5 2% 11,328 17.7 41.9 54.8 24.6 51.5 63.7 12.7 31.8 43.2 12.8 34.1 48.2
10% 2/5 4% 22,656 20.3 45.5 58.8 26.5 55.6 68.8 17.3 41.5 54.4 22.4 49.7 62.5
10% 5/5 10% 56,640 23.2 50.5 64.1 30.5 60.4 73.1 19.4 44.3 57.3 25.5 53.8 67.6
20% 1/5 4% 22,657 20.0 45.9 59.5 26.9 54.4 67.9 16.3 37.9 50.3 17.8 43.4 57.0
20% 2/5 8% 45,314 24.5 51.8 64.8 32.4 63.0 75.1 20.3 44.5 57.3 24.2 53.7 67.5
20% 5/5 20% 113,287 27.4 56.0 68.9 38.3 68.1 79.3 21.1 45.2 57.8 24.2 54.8 68.6

Table 3: Performance comparison on the 5K testing set of MS-COCO.

Text-to-Image Image-to-Text
Model R@1 R@5 R@10 R@1 R@5 R@10

MS-COCO 0% Ann, 0 pairs
sд baseline 7.5 16.8 23.2 8.8 15.0 22.8

MS-COCO 10% Img, 1/5 Sent, 2% Ann, 11,328 pairs
DPC [52] 8.1 28.3 38.0 10.5 30.8 41.0
DAN [36] 8.8 28.3 37.1 11.1 30.1 42.5
VSE++ [6] 8.5 27.6 36.5 10.7 30.2 44.5
SCAN [30] 12.7 31.8 43.2 12.8 34.1 48.2
Ours (A3VSE) 17.7 41.9 54.8 24.6 51.5 63.7

MS-COCO 50% Img, 2/5 Sent, 20% Ann, 113,287 pairs
DPC [52] 19.1 41.0 55.5 20.5 45.1 60.2
DAN [36] 19.5 40.8 54.0 20.7 47.7 61.7
VSE++ [6] 19.5 41.2 56.5 21.5 48.5 63.5
SCAN [30] 22.3 47.5 60.2 25.5 56.1 70.5
Ours (A3VSE) 28.2 57.9 70.6 38.4 69.5 81.1

MS-COCO 100% Ann, 566,435 pairs
DPC [52] 25.3 53.4 66.4 41.2 70.5 81.1
DAN [36] 29.8 58.8 70.0 40.8 70.0 79.8
VSE++ [6] 30.3 56.0 72.4 41.3 69.5 81.2
SCAN [30] 34.4 63.7 75.7 46.4 77.4 87.2
Ours (A3VSE) 39.0 68.0 80.1 49.3 81.1 90.2

Table 4: Performance comparison with baselines on two
sparse settings in MS-COCO.
greater improvement over current best model is achieved when less
pairwise annotations are available. The improvements converges
(but still outperforms) with more annotations available. A similar
trend can be observed for the image-to-text retrieval task. These
results demonstrate that the proposed A3VSEmodel can judiciously
use regional semantics from un-annotated images for training its
encoders and effectively learn the visual-semantic embeddings.

As shown in Table 2, in comparison to other recent models
DAN [36], DPC [52], and VSE++ [6], the proposed model signif-
icantly outperforms them in all scenarios. In terms of reducing
annotation effort, the proposed A3VSE model achieves competitive
performance (with the criteria defined as R@10 > 80.0%) trained on
only 20% annotations (23,200 pairs).

It is noteworthy that the unsupervised approach with global se-
mantics which use NO image-text pairs cannot deliver satisfactory
retrieval performance when query with natural language, indicat-
ing that there is a clear domain shift between the semantic pool
of current image classification/ tagging models and the natural

language queries. A similar phenomena is observed in our abla-
tion study. Moreover, from the crossover of 10.5 R@1 in Figure 1
(right), the unsupervised global semantics from external classifi-
cation datasets is worth as many as 14,000 image-text annotation
pairs for the recent cross-modal retrieval models. Notably, A3VSE
achieves 29.1 R@1 even trained with only 5,800 pairs.

4.5 Results on Sparse MS-COCO
Table 3 shows the results on the harder 5K testing set of MS-COCO.
We sample 5%, 10%, 20% of images in MS-COCO to keep the num-
ber training of pairs more comparable to Flickr30K. The proposed
model delivers the best performance on most metrics under all spar-
sity settings. For text-to-image retrieval, it outperforms SCAN [30]
by 2.9 to 6.3 in R@1, 4.0 to 11.4 in R@5, and 4.4 to 13.9 in R@10.
Similar trend can be observed in image-to-text retrieval task. The
comparison with other recently published models is shown in Ta-
ble 4 where the proposed model achieves the best performance in
all sparse corpus scenarios.

Despite using only 20% of image-text annotations, the proposed
model still achieves competitive performance (with the criteria
defined as R@10 > 70.0%) in the more challenging 5K testing set in
MS-COCO. More than 80% of annotation effort for the image-text
pairs could potentially be relieved. Based on the quantitative results
on multiple datasets, we validate the superiority and the annotation
efficiency of the proposed A3VSE model.

4.6 Ablation Study
To quantify the contribution from individual components, we con-
duct ablation studies evaluating the cross-modal retrieval perfor-
mance with models trained with 10% of images and 5/5 correspond-
ing text descriptions (10% annotations) in Flickr30K. In each experi-
ment, we remove one or change component of concern to quantify
its relative importance. The larger the drop implies that the com-
ponent is more important. For the experiment without semantics
(s), we remove all the regional semantics from the input and show
the performance of the vanilla model. Then we swap the sequence
of regional semantics with global semantics sд and encode global
semantics (can be viewed as image-level tags after applying a 0.3
threshold) with the shared word embedding matrix. For the internal
modules and adversarial objectives, we either remove the attention
layer with mean pooling over encoded visual/textual entities as
the final instance-level representation, or we purge an adversarial
objective from Eq. 9 during the training phase.
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a group of people is bike riding in the woods .

a man with glasses is wearing a beer can crocheted hat .

1. A young boy wearing a blue cap looking through a telescope 
2. A young African American boy wearing a blue baseball cap 
gazes through a telescope intently while another young boy 
waits behind him . 
3. A young boy wearing a blue hat is looking through a 
telescope while another boy watches . 
4. A child looking through a telescope . 
5. A child is looking through a telescope

(a) 50% Img, 2/5 Sent, 23200 pairs

Young boy in a white striped shirt holding a tennis racket .

1. A child is wearing a blue knitted hat . 
2. A young boy or girl wearing a red jacket with fur and a blue 
hat is looking down . 
3. A little girl in a sweater is laying down on a couch sleeping . 
4. person in red-checked jacket with fur collar and dark 
stocking cap with head bowed . 
5. A girl dressed up in a red dress and a hat with long brown 
hair 

Three dogs in different shades of brown and white biting each other .

(b) 10% Img, 2/5 Sent, 5,800 pairs

A girl is playing an electric guitar in front of an amplifier .

…

A smiling woman playing the harp .

…

1. A street corner with stores and two men walking the sidewalk 
2. Several Asian people are walking around a busy downtown 
shopping area . 
3. People are busy shopping at a grocery store . 
4. Two men are having a conversation in front of a souvenir shop 
in rome . 
5. A cowboy is bucked off a steer while other men watch from 
the stands .

(c) Failures of (b)
Figure 4: Qualitative examples of the proposed A3VSE model in text-to-image retrieval task (the upper two rows) and image-
to-text retrieval task (the bottom row) on Flickr30K.

Flickr30K 10% Img 5/5 Sent, 10% Ann, 14,500 pairs
Text-to-Image Image-to-Text

Model R@1 R@5 R@10 R@1 R@5 R@10
No s 23.4 47.9 58.2 26.5 58.1 71.5
Swap s with sд 29.0 56.3 67.2 40.5 67.4 77.6
s , without attention 23.8 50.1 62.7 35.8 64.3 75.1
s , without Ladv 30.9 58.5 69.0 43.8 70.9 79.5
Without ℓintra 31.8 59.6 71.0 44.8 72.5 80.8
Without ℓcross 31.3 59.2 70.5 45.2 71.8 80.1
Without ℓtrans 31.5 59.7 70.9 46.1 71.8 80.3
Full model 32.0 60.1 71.0 46.8 72.8 80.7

Table 5: Ablation study of the proposed model

Table 5 shows the results of the ablation study. We observe that
while global semantics boost model performance from the vanilla
model, the regional semantics is the better choice even if they have
a relatively small vocabulary size (1,104 versus 1,576) for the un-
annotated images in sparse Flickr30K. The visualization of learned
embeddings in Figure 3b and Figure 3c double confirms the differ-
ence. One possible explanation for this phenomena is that regional
semantics are more similar to natural language descriptions. We
observe that the distribution of vocabulary is closer (13.1% Inter-
section over Union (IoU)) between the natural language queries
and the regional semantics than the global semantics (9.8% IoU).
For instance, in a natural language description, people tend to de-
scribe an image with “frog” or “dog” rather than the detected global
semantics “Amphibian” and “havanese”.

Additionally, the attentive adversarial learning with domain
discriminators plays an important role for closing the domain gaps
between annotated and un-annotated inputs, delivers improved
performance over models without adversarial objectives. However,
we observe small variants among the best metrics over various
configurations, suggesting that a careful hyper-parameter tuning
may be required to achieve the optimal performance. We leave
the robust automatic tuning for aligning multiple heterogeneous
domains as our future work.

4.7 Qualitative Results
Figure 4 illustrates sampled qualitative testing results in the image-
to-text and text-to-image retrieval tasks on sparse Flickr30K. The

top two rows show the top four retrieved images given the natu-
ral language query above. The one and only one correct image is
marked in green or red if rank > 10. The image-to-text retrieval
results are depicted in the bottom row. We list the top five retrieved
sentences and the corresponding query image. The correct sen-
tences (up to five) are colored in green otherwise red.

In most cases the proposed model generates satisfactory results.
As less parallel image-text pairs are available for training, we ob-
serve performance degeneration. For the failure cases, as expected,
we observe that many failures result from out-of-vocabulary words
(e.g. “amplifier” and “harp”) in the sentences.

5 CONCLUSION
To reduce expensive human annotation cost, we have presented
a novel annotation efficient A3VSE model for learning improved
visual-semantic embeddings (VSEs) with sparsely annotated mul-
timodal corpora. The proposed model jointly leverages strong su-
pervision from image-text pairs and weak supervision from image-
semantic pairs where the regional semantics are extracted from
the un-annotated image collection. To further unify the hetero-
geneous inputs in the joint embedding space, our model employs
attention-enhanced adversarial objectives to model intra-modal,
cross-modal, and transitive alignment to selectively align annotated
and un-annotated portion of visual and textual inputs.

In sparse Flickr30K and MS-COCO, the proposed model consis-
tently and significantly outperforms recent competitive baselines.
In comparison to global semantic tags, we have shown that regional
semantics are more feasible for learning VSEs under sparsity. With
regard to reducing annotation effort, we have presents insights
towards efficient annotation collection and utilization. We have
demonstrated that nearly 80% of the annotations can be reduced
with the proposed model while achieving competitive results to
recent models trained with the complete annotations.
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